Smooth spline surface generation over meshes of irregular topology J.J. Zheng, J.J. Zhang, H.J.Zhou, L.G. Shen The Visual Computer(2005) 21:858-864 Pacific.

Slides:



Advertisements
Similar presentations
Bicubic G1 interpolation of arbitrary quad meshes using a 4-split
Advertisements

© University of Wisconsin, CS559 Spring 2004
COMPUTER GRAPHICS CS 482 – FALL 2014 OCTOBER 8, 2014 SPLINES CUBIC CURVES HERMITE CURVES BÉZIER CURVES B-SPLINES BICUBIC SURFACES SUBDIVISION SURFACES.
Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 10 Ravi Ramamoorthi
Overview June 9- B-Spline Curves June 16- NURBS Curves June 30- B-Spline Surfaces.
MIT EECS 6.837, Durand and Cutler Curves & Surfaces.
MIT EECS 6.837, Durand and Cutler Curves & Surfaces.
Distance Between a Catmull- Clark Subdivision Surface and Its Limit Mesh Zhangjin Huang, Guoping Wang Peking University, China.
Classic Subdivision Schemes. Schemes Catmull-Clark (1978) Doo-Sabin (1978) Loop (1987) Butterfly (1990) Kobbelt (1996) Mid-edge (1996 / 1997)
On Triangle/Quad Subdivision Scott Schaefer and Joe Warren TOG 22(1) 28 – 36, 2005 Reporter: Chen zhonggui
Subdivision Surfaces Introduction to Computer Graphics CSE 470/598 Arizona State University Dianne Hansford.
Ship Hull Design 赵宏艳 Nov. 21, 2007.
Subdivision Curves & Surfaces and Fractal Mountains. CS184 – Spring 2011.
CS Peter Schröder Subdivision I: The Basic Ideas.
北京邮电大学. Sep Wireless and EMC Lab 主要内容 实验室研究方向 实验室研究方向 承担项目情况 承担项目情况 对外合作 对外合作 培养方向 培养方向 就业分配 就业分配 实验室文化 实验室文化.
Cornell CS465 Fall 2004 Lecture 16© 2004 Steve Marschner 1 Curved surfaces CS 465 Lecture 16.
Fractal Mountains, Splines, and Subdivision Surfaces Jordan Smith UC Berkeley CS184.
Modelling. Outline  Modelling methods  Editing models – adding detail  Polygonal models  Representing curves  Patched surfaces.
09/18/02 Dinesh Manocha, COMP258 Parametric Patches Tensor product or rectangular patches are of the form: P(u,w) = u,w [0,1]. The number of control points.
Normal based subdivision scheme for curve and surface design 杨勋年
1 Subdivision Surfaces CAGD Ofir Weber. 2 Spline Surfaces Why use them?  Smooth  Good for modeling - easy to control  Compact (complex objects are.
Subdivision Overview Subdivision is a two part process Control Mesh
兽医病理生理学 Veterinary Pathophysiology. 一、概念 (Definition or concept) : 兽医病理生理学是研究动物疾病发生的 原因和条件,研究疾病全过程中患病体的 机能、代谢的动态变化及其机制,揭示疾 病发生、发展和转归的规律,阐明疾病的 本质,为疾病的防治提供理论依据。
Subdivision Primer CS426, 2000 Robert Osada [DeRose 2000]
UML 对象设计与编程 主 讲 : 董兰芳 副教授 Dept. of Computer Science,USTC
09/16/02 Dinesh Manocha, COMP258 Surfaces Locally a 2D manifold: i.e. approximating a plane in the ngbd. of each point. A 2-parameter family of points.
中国科学技术大学视觉计算与可视化实验室 讨论题目 _ 时间 讨论题目 演讲人: ** 指导教师: ** 老师 中国科学技术大学计算机学院 2005 年 6 月 28 日.
Introduction to Subdivision Surfaces. Subdivision Curves and Surfaces 4 Subdivision curves –The basic concepts of subdivision. 4 Subdivision surfaces.
Curves and Surfaces (cont’) Amy Zhang. Conversion between Representations  Example: Convert a curve from a cubic B-spline curve to the Bézier form:
Smooth Spline Surfaces over Irregular Topology Hui-xia Xu Wednesday, Apr. 4, 2007.
Ziting (Vivien) Zhou1 Drawing Graphs By Computer Graph from
Bspline/NURBS and Subdivision Surface Computer Graphics Lecture 15 Taku Komura.
Subdivision/Refinement Dr. S.M. Malaek Assistant: M. Younesi.
演化博弈中个体的 惰性对合作行为的 影响 报告人:刘润然 中国科学技术大学 指导老师:汪秉宏教授.
Manuel Mesters - Subdivision Surfaces computer graphics & visualization Seminar Computer Graphics Geometric representation and processing: Subdivision.
Introduction to Subdivision surfaces Martin Reimers CMA, University of Oslo.
Image Vectorization Cai Qingzhong 2007/11/01.
CS559: Computer Graphics Lecture 24: Shape Modeling Li Zhang Spring 2010.
Subdivision Schemes Basic idea: Start with something coarse, and refine it into smaller pieces for rendering –We have seen how subdivision may be used.
Non-Uniform Rational B-Splines NURBS. NURBS Surfaces NURBS surfaces are based on curves. The main advantage of using NURBS surfaces over polygons, is.
Parametric Surfaces Define points on the surface in terms of two parameters Simplest case: bilinear interpolation s t s x(s,t)x(s,t) P 0,0 P 1,0 P 1,1.
A construction of rational manifold surfaces of arbitrary topology and smoothness from triangular meshes Presented by: LiuGang
Geometric Modelling 2 INFO410 & INFO350 S Jack Pinches
1 Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces Fuhua (Frank) Cheng University of Kentucky, Lexington, KY Junhai Yong Tsinghua University,
Lee Byung-Gook Dongseo Univ.
太阳能综合利用技术 中国科学技术大学热科学和能源工程系. 一、多功能热泵系统 多功能家用热泵样机通过控制元件的切换 可以实现三种运行模式:①单独制热水模 式,②制冷兼制热水模式,③制暖模式。
1 Subdivision. 2 Subdivision for game Why? Large model require many memory for storage Need to dynamically tessellated during game play Make surface modeling.
11/26/02(C) University of Wisconsin Last Time BSplines.
辽宁地质工程职业学院 机电系电气电子教研室 2008 年 6 月 校企合作 实现双赢 王翠芝 校企合作目标 加强校企合作,推进产教结合, 要以校企两方面 “ 双赢 ” 为目标 。校企 合作的过程是校企双方互相选择的过 程,更是相互促进、相互提高的过程, 是在市场的激励下参与竞争,提高生 产力,走向强强联合,共同发展的过.
森林保护学本科系列课程 教学改革与实践 西北农林科技大学 一、基本情况 二、主要成果 三、创新点 四、成果的应用 项目研究背景 项目的总体设计 成果简介 解决的主要教学问题 解决教学问题的方法 改革前后的对比.
德国 V. S 家具公司. V. S家具公司创建于1898年,是生产教学、办公家具的专业厂。 1898… 1914… 1997… 1945…
Construction of Navau and Garcia. Basic steps Construction has two parameters: smoothness k and n > k, defining how closely the surface follows the control.
CS 318 Intro to Computer Graphics John C. Hart
1. 利用图形化开发环境 LabVIEW 对 Xilinx Spartan3E 进行编程 汤敏 NI 高校市场部.
University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell Subdivision surfaces.
On the singularity of a class of parametric curves Imre Juh á sz University of Miskolc, Hungary CAGD, In Press, Available online 5 July 2005 Reporter:
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1.
3D 仿真机房建模 哈尔滨工业大学 指导教师:吴勃英、张达治 蒋灿、杜科材、魏世银 机房尺寸介绍.
CS559: Computer Graphics Lecture 33: Shape Modeling Li Zhang Spring 2008.
Subdivision Schemes. Center for Graphics and Geometric Computing, Technion What is Subdivision?  Subdivision is a process in which a poly-line/mesh is.
Tessellation Shaders.
COMPUTER GRAPHICS CHAPTERS CS 482 – Fall 2017 SPLINES
Advanced Computer Graphics
Daniil Rodin for CAGD course, 2016
The Variety of Subdivision Schemes
Generalization of (2n+4)-point approximating subdivision scheme
Grimm and Hughes Input: arbitrary mesh
Multiresolution Meshes for 3-D Object Description
Overview June 9- B-Spline Curves June 16- NURBS Curves
Presentation transcript:

Smooth spline surface generation over meshes of irregular topology J.J. Zheng, J.J. Zhang, H.J.Zhou, L.G. Shen The Visual Computer(2005) 21: Pacific Graphics 2005 Reporter: Chen Wenyu Thursday, Mar 2, 2006

About the author Introduction Zheng-Ball surface patch Irregular closed mesh Irregular open mesh Conclusions

About the author 郑津津, professor 中国科学技术大学精密机械与精密仪 器系. He received his Ph.D. in computer aided geometric modelling from the University of Birmingham, UK, in His research interests include CAGD,computer-aided engineering design, microelectro-mechanical systems and computer simulation.

About the author 张建军, professor Bournemouth Media School, Bournemouth University. Ph.D. 1987, 重庆大学. His research interests include computer graphics, computer-aided design and computer animation..

About the author H.J. Zhang, 高级工程师 中国科大国家同步辐射实验室. She received her M.Sci. from the University of Central England Birmingham, UK.. Her research interests include mechanical design, micro- electro-mechanical systems and vacuum technology.

About the author 沈连婠, professor 中国科学技术大学精密机械与 精密仪器系. Her research interests include e-design, e-manufacturing, e-education and micro- electromechanical systems

About the author Introduction Zheng-Ball surface patch Irregular closed mesh Irregular open mesh Conclusions

Introduction Regular mesh: each of the mesh points is surrounded by four quadrilaterals

Introduction generate surfaces over regular meshes: B-spline surfaces …. generate surfaces over irregular meshes: final surface be ---subdivision surfaces ---spline surface

Introduction subdivision surfaces C-C subdivision C 2 Doo-sabin subdivision C 1

Spline surface Original mesh M subdivided mesh M1 spline surface

Spline surfaces Peter(CAGD 93); Loop(sig94) 1. Doo-Sabin subdivision 2. a patch for a point regular mesh : bi-quadratic B-spline irregular area : bi-cubic surface or triangular patch

Spline surfaces Loop,DeRose(sig90) 1. subdivision once 2. a patch for a point regular mesh : bi-quadratic B-spline irregular area : S-patch

Spline surfaces Peters(sig2000) 1. C-C subdivision 2. a bi-cubic scheme resulting patches agree with the C-C limit surface except around the irregular vertices

This paper C-C subdivision: (one face : four edges) A patch for each vertex regular area: bi-quadratic Bezier irregular area: Zheng-Ball patch

This paper Original mesh M subdivided mesh M1 spline surface C-C subdivision Zheng-Ball surface patch

Compare Peters ’ methods require control point adjustment near extraordinary vertices. But the proposed method needn ’ t. Takes fewer steps to process compared with Peters ’ methods. Loops ’ methods go through the complicated conversion of control points. But the proposed method is much simpler.

About the author Introduction Zheng-Ball surface patch Irregular closed mesh Irregular open mesh Conclusions

Zheng-Ball surface patch Zheng, J.J., Ball, A.A.: Control point surfaces over non- four-sided areas.CAGD.1997

Definition of the surface Control mesh Zheng-Ball surface patch

domain An n-sided control point surface of degree m is defined by: parameters u = (u 1,u 2,...,u n ) must satisfy:

Definition of the basis Zheng-Ball surface patch 1. 边界条件 : 边界上是多项式曲线 2. 边界上对 导数的条件 3. 归一性 条件 The patch can be connect to the surrounding patches with C1 continuity

Zheng-Ball surface patch In this paper, the control mesh

Zheng-Ball surface patch

in which d i are auxiliary variables satisfying

Zheng-Ball surface patch

About the author Introduction Zheng-Ball surface patch Irregular closed mesh Irregular open mesh Conclusions

Irregular closed mesh C-C subdivision Create patches Control point generation corresponding to a vertex of valence 5

Irregular closed mesh Two adjacent patches joined with C 1 continuity. They share common boundary points ( ◦ ). control vectors (− → ) and( · · · → )

Irregular closed mesh Closed irregular mesh and the resulting geometric model. Patch structure: Patches on the corners are non- quadrilateral Zheng – Ball patches; the others are bi-quadratic Bezier patches

About the author Introduction Zheng-Ball surface patch Irregular closed mesh Irregular open mesh Conclusions

Irregular open mesh Boundary vertex Intermediate vertex Inner vertex

Irregular open mesh Examples

About the author Introduction Zheng-Ball surface patch Irregular closed mesh Irregular open mesh Conclusions

Original mesh M  subdivided mesh M 1  C 1 spline surface

Thanks