Problems 3 Dr. Kagan ERYURUK
1) Steam enters a nozzle at 400°C and 800 kPa with a velocity of 10 m/s, and leaves at 300°C and 200 kPa while losing heat at a rate of 25 kW. For an inlet area of 800 cm2, determine the velocity and the volume flow rate of the steam at the nozzle exit. When a man returns to his well-sealed house on a summer day, he finds that the house is at 32°C. He turns on the air conditioner, which cools the entire house to 20°C in 15 min. If the COP of the air-conditioning system is 2.5, determine the power drawn by the air conditioner. Assume the entire mass within the house is equivalent to 800 kg of air for which cv = 0.72 kJ/kg · °C and cp = 1.0 kJ/kg · °C. 3) During the isothermal heat addition process of a Carnot cycle, 900 kJ of heat is added to the working fluid from a source at 400°C. Determine (a) the entropy change of the working fluid, (b) the entropy change of the source, and (c) the total entropy change for the process. 4) A house that is losing heat at a rate of 80,000 kJ/h when the outside temperature drops to 15°C is to be heated by electric resistance heaters. If the house is to be maintained at 22°C at all times, determine the reversible work input for this process and the irreversibility.
5) Helium is to be compressed from 120 kPa and 310 K to 700 kPa and 430 K. A heat loss of 20 kJ/kg occurs during the compression process. Neglecting kinetic energy changes, determine the power input required for a mass flow rate of 90 kg/min. 6) An automobile engine consumes fuel at a rate of 28 L/h and delivers 60 kW of power to the wheels. If the fuel has a heating value of 44,000 kJ/kg and a density of 0.8 g/cm3, determine the efficiency of this engine. 7) An air conditioner removes heat steadily from a house at a rate of 750 kJ/min while drawing electric power at a rate of 6 kW. Determine (a) the COP of this air conditioner and (b) the rate of heat transfer to the outside air.
8) Air is compressed by a 12-kW compressor from P1 to P2 8) Air is compressed by a 12-kW compressor from P1 to P2. The air temperature is maintained constant at 25°C during this process as a result of heat transfer to the surrounding medium at 10°C. Determine the rate of entropy change of the air. State the assumptions made in solving this problem. 9) Refrigerant-134a enters an adiabatic compressor as saturated vapor at 160 kPa at a rate of 2 m3/min and is compressed to a pressure of 900 kPa. Determine the minimum power that must be supplied to the compressor. 10) The electric power needs of a community are to be met by windmills with 10-m-diameter rotors. The windmills are to be located where the wind is blowing steadily at an average velocity of 8 m/s. Determine the minimum number of windmills that need to be installed if the required power output is 600 kW. 11) A freezer is maintained at −6.7°C by removing heat from it at a rate of 78 kJ/min. The power input to the freezer is 31.3 kJ/min, and the surrounding air is at 23.9°C. Determine (a) the reversible power, (b) the irreversibility, and (c) the second-law efficiency of this freezer.