Modern Control System EKT 308 Root Locus Method (contd…)

Slides:



Advertisements
Similar presentations
Root Locus Analysis (2) Hany Ferdinando Dept. of Electrical Eng. Petra Christian University.
Advertisements

Root Locus Analysis (1) Hany Ferdinando Dept. of Electrical Eng. Petra Christian University.
Frequency Response Techniques
1 سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
Chapter 8 Root Locus <<<4.1>>>
Rules for Sketching the Root Locus 1.Number of Branches: The number of branches of root locus = the number of closed loop poles. 2.Symmetry: The root locus.
Chapter 8 Root Locus and Magnitude-phase Representation
1 Modern Control Theory Digital Control Lecture 4.
What is Root Locus ? The characteristic equation of the closed-loop system is 1 + K G(s) = 0 The root locus is essentially the trajectories of roots of.
Digital Control Systems Stability Analysis of Discrete Time Systems.
Modern Control Systems (MCS) Dr. Imtiaz Hussain Assistant Professor URL :
1 Modern Control Theory Digital Control Lecture 4 By Kirsten Mølgaard Nielsen Based on notes from Jesper Sandberg Thomsen.
Curve sketching This PowerPoint presentation shows the different stages involved in sketching the graph.
Automatic control by meiling CHEN1 Lesson 9 Root locus Automatic control 2. Analysis.
The Root Locus Analysis Eng R. L. Nkumbwa MSc, MBA, BEng, REng. Copperbelt University.
Feedback Control System THE ROOT-LOCUS DESIGN METHOD Dr.-Ing. Erwin Sitompul Chapter 5
Control Engineering Lecture# 10 & th April’2008.
6.6 The Fundamental Theorem of Algebra
Chapter 6: Root Locus. Basic RL Facts:  Consider standard negative gain unity feedback system  T R (s) = L(s)/[1+L(s)], S(s) = 1/[1+L(s)], L=G C G,
Ch6 The Root Locus Method. Main content §The Root Locus Concept §The Root Locus Procedure §Generalized root locus or Parameter RL §Parameter design by.
ME375 Handouts - Spring 2002 Root Locus Method.
Automatic Control Systems
Chapter 5: Root Locus Nov. 8, Key conditions for Plotting Root Locus Given open-loop transfer function G k (s) Characteristic equation Magnitude.
Modern Control Systems (MCS) Dr. Imtiaz Hussain Assistant Professor URL :
Biomedical Control Systems (BCS) Module Leader: Dr Muhammad Arif muhammadarif Batch: 10 BM Year: 3 rd Term: 2 nd Credit Hours (Theory):
Chapter 10 Frequency Response Techniques Frequency Response Techniques.
Lec 10. Root Locus Analysis II
Control Theory Root locus
Modern Control System EKT 308 Aspects of State Equation & Root Locus Method.
Modern Control System EKT 308
Chapter 5: Root Locus Nov , Two Conditions for Plotting Root Locus Given open-loop transfer function G k (s) Characteristic equation Magnitude.
Chapter 6 Root-Locus Analysis 6.1 Introduction - In some systems simple gain adjustment may move the closed- loop poles to desired locations. Then the.
Lecture 18: Root Locus Basics
Lecture 9 Feedback Control Systems President UniversityErwin SitompulFCS 9/1 Dr.-Ing. Erwin Sitompul President University
Root Locus Techniques (Sketching Method) Date: 25 th September 2008 Prepared by: Megat Syahirul Amin bin Megat Ali
Dr. Tamer Samy Gaafar Automatic Control Theory CSE 322 Lec. 11 Root Locus.
Exercise 1 (Root Locus) Sketch the root locus for the system shown in Figure K 1 (
Modern Control System EKT 308
Prof. Wahied Gharieb Ali Abdelaal
OBJECTIVE  Determination of root from the characteristic equation by using graphical solution.  Rules on sketching the root locus.  Analysis of closed-loop.
Root Locus. Closed-loop control system with a variable parameter K.
7.1 Root Locus (RL) Principle We introduce the RL through an example. Consider servo motor system shown bellow The closed loop transfer function is motor.
Shroff S.R. Rotary Institute of Chemical Technology Chemical Engineering Instrumentation and process Control.
CONTROL SYSTEM UNIT-IV Datta Meghe Institute of engineering Technology and Research Sawangi (meghe),Wardha 1 DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION.
Lecture 11/12 Analysis and design in the time domain using root locus North China Electric Power University Sun Hairong.
Intelligent Robot Lab Pusan National University Intelligent Robot Lab Chapter 6. TRANSIENT RESPONSE -- STABILITY Pusan National University Intelligent.
Algebra 2. Solve for x Algebra 2 (KEEP IN MIND THAT A COMPLEX NUMBER CAN BE REAL IF THE IMAGINARY PART OF THE COMPLEX ROOT IS ZERO!) Lesson 6-6 The Fundamental.
The Root Locus Analysis
Salman Bin Abdulaziz University
Root Locus Method Assist. Professor. Dr. Mohammed Abdulrazzaq
Chapter 5 Root Locus.
Roots and Zeros 5.7.
Daily Check!!!.
Lecture 19: Root Locus Continued
Learning Outcomes After completing this ppt the student will be able to: Make and interpret a basic Routh table to determine the stability of a system.
Daily Check!!!.
7.1 Root Locus (RL) Principle
Root-locus Technique for Control Design
Root-Locus Analysis (1)
Graphing Polynomial Functions
Curve sketching This PowerPoint presentation shows the different stages involved in sketching the graph.
LINEAR CONTROL SYSTEMS
Intercepts and Symmetry
Root Locus Techniques CH 8: Islamic University of Gaza
In all the problems do the following:
Root-Locus Analysis (2)
Root Locus Techniques CH 8: Islamic University of Gaza
CH. 6 Root Locus Chapter6. Root Locus.
4.0 ROOT LOCUS OBJECTIVE ~ Rules on sketching the root locus.
Chapter 6. STABILITY Good relationships nurture you. They help you find yourself and who you are. I don’t mean just relationships with boys or men. Relationships.
Presentation transcript:

Modern Control System EKT 308 Root Locus Method (contd…)

Root Locus Procedure (contd…) Root Locus Procedure Step 1 (review): Locate poles and zeros in the s-plane (‘x’ for poles, ‘o’ for zeros)

Step 2 (review): Locate the segments of the real axis that are root loci. The root locus on the real axis lies in a segment of the real axis to the left of an odd number of poles and zeros. Magnitude and Angle Criterion

Magnitude and Angle Criterion (contd…)

Figure 1: Angle for s = s1 Note: Because complex roots appear as complex conjugate pairs, root loci must be symmetrical with respect to horizontal real axis.

Step 3: The loci proceed to the zeros at infinity along asymptotes centered at Where n, the order of numerator polynomial and M is the order of denominator Polynomial

Example for step 3. Figure 2: Root loci on real axis

Asymptotes are shown in Figure 3

Figure 3: Asymptotes

Step 4: Determine where the locus crosses the imaginary axis (if it does so), using Routh-Hurwitz criterion. Hint: When root locus crosses the imaginary axis from left to right, the system moves from stability to instability. Example: Complete first four steps of sketching root locus of the characteristic equation Step 1: Poles and zeros are shown in figure 4.

Figure 4: Poles and zeros

Step 2: There is a segment of root locus on the real axis between s=0 to s=-4 as shown in figure 4 above. The asymptotes are drawn in figure 5.

Figure 5: Asymptotes

Step 4.