Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming Chapter 2.

Slides:



Advertisements
Similar presentations
Geometry and Theory of LP Standard (Inequality) Primal Problem: Dual Problem:
Advertisements

Linear Programming Problem
Introduction to Sensitivity Analysis Graphical Sensitivity Analysis
CCMIII U2D4 Warmup This graph of a linear programming model consists of polygon ABCD and its interior. Under these constraints, at which point does the.
1/53 Slide Linear Programming: Sensitivity Analysis and Interpretation of Solution n Introduction to Sensitivity Analysis n Graphical Sensitivity Analysis.
BA 452 Lesson A.2 Solving Linear Programs 1 1ReadingsReadings Chapter 2 An Introduction to Linear Programming.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 2 Linear Programming Models: Graphical and Computer Methods © 2007 Pearson Education.
Chapter 2: Introduction to Linear Programming
An Introduction to Linear Programming : Graphical and Computer Methods
6s-1Linear Programming CHAPTER 6s Linear Programming.
1 1 Slide LINEAR PROGRAMMING Introduction to Sensitivity Analysis Professor Ahmadi.
LINEAR PROGRAMMING: THE GRAPHICAL METHOD
Chapter 3 An Introduction to Linear Programming
3 Components for a Spreadsheet Linear Programming Problem There is one cell which can be identified as the Target or Set Cell, the single objective of.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
1 1 Slides by John Loucks St. Edward’s University Modifications by A. Asef-Vaziri.
Readings Readings Chapter 2 An Introduction to Linear Programming.
John Loucks Modifications by A. Asef-Vaziri Slides by St. Edward’s
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
FORMULATION AND GRAPHIC METHOD
Linear Programming.
Graphical Solutions Plot all constraints including nonnegativity ones
1 1 Slide LINEAR PROGRAMMING: THE GRAPHICAL METHOD n Linear Programming Problem n Properties of LPs n LP Solutions n Graphical Solution n Introduction.
© Copyright 2004, Alan Marshall 1 Lecture 1 Linear Programming.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Kerimcan OzcanMNGT 379 Operations Research1 LP: Sensitivity Analysis and Interpretation of Solution Chapter 3.
Chapter 19 Linear Programming McGraw-Hill/Irwin
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS ST. EDWARD’S UNIVERSITY.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 6S Linear Programming.
1 1 Slide Linear Programming (LP) Problem n A mathematical programming problem is one that seeks to maximize an objective function subject to constraints.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
THE GALAXY INDUSTRY PRODUCTION PROBLEM -
Chapter 7 Introduction to Linear Programming
1 1 Slide © 2005 Thomson/South-Western Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Linear Programming: Sensitivity Analysis and Interpretation of Solution Pertemuan 5 Matakuliah: K0442-Metode Kuantitatif Tahun: 2009.
LP: Summary thus far Requirements Graphical solutions Excel Sensitivity Analysis.
QMB 4701 MANAGERIAL OPERATIONS ANALYSIS
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
A LINEAR PROGRAMMING PROBLEM HAS LINEAR OBJECTIVE FUNCTION AND LINEAR CONSTRAINT AND VARIABLES THAT ARE RESTRICTED TO NON-NEGATIVE VALUES. 1. -X 1 +2X.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
Chapter 4 Linear Programming: The Simplex Method
Linear Programming Models: Graphical and Computer Methods
Sensitivity analysis continued… BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Supplement 6 Linear Programming.
3 Components for a Spreadsheet Optimization Problem  There is one cell which can be identified as the Target or Set Cell, the single objective of the.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Operations Research By: Saeed Yaghoubi 1 Graphical Analysis 2.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Introduction to Linear Programming Linear Programming Problem Linear Programming Problem Problem Formulation Problem Formulation A Simple Maximization.
1 1 Slide Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Chapter 2 Linear Programming Models: Graphical and Computer Methods
An Introduction to Linear Programming
Decision Support Systems
An Introduction to Linear Programming Pertemuan 4
Chapter 2 An Introduction to Linear Programming
St. Edward’s University
Introduction to linear programming (LP): Minimization
Graphical Solution Procedure
Linear Programming Problem
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Presentation transcript:

Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming Chapter 2

Kerimcan OzcanMNGT 379 Operations Research2 Linear Programming (LP) Problem The maximization or minimization of some quantity is the objective in all linear programming problems. All LP problems have constraints that limit the degree to which the objective can be pursued. A feasible solution satisfies all the problem's constraints. An optimal solution is a feasible solution that results in the largest possible objective function value when maximizing (or smallest when minimizing). A graphical solution method can be used to solve a linear program with two variables. If both the objective function and the constraints are linear, the problem is referred to as a linear programming problem. Linear functions are functions in which each variable appears in a separate term raised to the first power and is multiplied by a constant (which could be 0). Linear constraints are linear functions that are restricted to be "less than or equal to", "equal to", or "greater than or equal to" a constant.

Kerimcan OzcanMNGT 379 Operations Research3 Problem Formulation Problem formulation or modeling is the process of translating a verbal statement of a problem into a mathematical statement. Understand the problem thoroughly. Describe the objective. Describe each constraint. Define the decision variables. Write the objective in terms of the decision variables. Write the constraints in terms of the decision variables. LP Formulation Max 5x 1 + 7x 2 s.t. x 1 < 6 2x 1 + 3x 2 < 19 x 1 + x 2 < 8 x 1, x 2 > 0

Kerimcan OzcanMNGT 379 Operations Research Example 1: Graphical Solution 2 x x 2 < 19 x 2 x1x1 x 1 + x 2 < 8 x 1 < 6

Kerimcan OzcanMNGT 379 Operations Research5 Example 1: Graphical Solution x1x1 x 2 (7, 0) (0, 5) Objective Function 5 x 1 + 7x 2 = 35 Objective Function 5 x 1 + 7x 2 = 35 Objective Function 5 x 1 + 7x 2 = 46 Objective Function 5 x 1 + 7x 2 = 46 Optimal Solution ( x 1 = 5, x 2 = 3) Optimal Solution ( x 1 = 5, x 2 = 3)

Kerimcan OzcanMNGT 379 Operations Research6 Summary of the Graphical Solution Procedure (for maximization) Prepare a graph of the feasible solutions for each of the constraints. Determine the feasible region that satisfies all the constraints simultaneously.. Draw an objective function line. Move parallel objective function lines toward larger objective function values without entirely leaving the feasible region. Any feasible solution on the objective function line with the largest value is an optimal solution.

Kerimcan OzcanMNGT 379 Operations Research7 Slack and Surplus Variables A linear program in which all the variables are non-negative and all the constraints are equalities is said to be in standard form. Standard form is attained by adding slack variables to "less than or equal to" constraints, and by subtracting surplus variables from "greater than or equal to" constraints. Slack and surplus variables represent the difference between the left and right sides of the constraints. Slack and surplus variables have objective function coefficients equal to 0. Max 5x 1 + 7x 2 + 0s 1 + 0s 2 + 0s 3 s.t. x 1 + s 1 = 6 2x 1 + 3x 2 + s 2 = 19 x 1 + x 2 + s 3 = 8 x 1, x 2, s 1, s 2, s 3 > 0

Kerimcan OzcanMNGT 379 Operations Research8 Extreme Points and the Optimal Solution The corners or vertices of the feasible region are referred to as the extreme points. An optimal solution to an LP problem can be found at an extreme point of the feasible region. When looking for the optimal solution, you do not have to evaluate all feasible solution points. You have to consider only the extreme points of the feasible region x1x1x1x1 FeasibleRegion x 2 x 2

Kerimcan OzcanMNGT 379 Operations Research9 Computer Solutions Computer programs designed to solve LP problems are now widely available. Most large LP problems can be solved with just a few minutes of computer time. Small LP problems usually require only a few seconds. Linear programming solvers are now part of many spreadsheet packages, such as Microsoft Excel. In this chapter we will discuss the following output:  objective function value  values of the decision variables  reduced costs  slack/surplus In the next chapter we will discuss how an optimal solution is affected by a change in:  a coefficient of the objective function  the right-hand side value of a constraint

Kerimcan OzcanMNGT 379 Operations Research10 Example 1: Spreadsheet Solution

Kerimcan OzcanMNGT 379 Operations Research11 Example 1: Spreadsheet Solution

Kerimcan OzcanMNGT 379 Operations Research12 Example 1: Spreadsheet Solution Interpretation of Computer Output We see from the previous slide that: Objective Function Value = 46 Decision Variable #1 (x 1 ) = 5 Decision Variable #2 (x 2 ) = 3 Slack in Constraint #1 = 1 (= 6 - 5) Slack in Constraint #2 = 0 (= ) Slack in Constraint #3 = 0 (= 8 - 8) The reduced cost for a decision variable whose value is 0 in the optimal solution is the amount the variable's objective function coefficient would have to improve (increase for maximization problems, decrease for minimization problems) before this variable could assume a positive value. The reduced cost for a decision variable with a positive value is 0.

Kerimcan OzcanMNGT 379 Operations Research13 Example 2: A Minimization Problem LP Formulation Min 5x 1 + 2x 2 s.t. 2x 1 + 5x 2 > 10 4x 1 - x 2 > 12 x 1 + x 2 > 4 x 1, x 2 > x2x2x2x2 x2x2x2x2 4 x 1 - x 2 > 12 x 1 + x 2 > 4 x 1 + x 2 > 4 4 x 1 - x 2 > 12 x 1 + x 2 > 4 x 1 + x 2 > 4 2 x x 2 > 10 x1x1x1x1 x1x1x1x1 Feasible Region

Kerimcan OzcanMNGT 379 Operations Research14 Example 2: A Minimization Problem Solve for the Extreme Point at the Intersection of the Two Binding Constraints 4x 1 - x 2 = 12 x 1 + x 2 = 4 Adding these two equations gives: 5x 1 = 16 or x 1 = 16/5. Substituting this into x 1 + x 2 = 4 gives: x 2 = 4/ x2x2x2x2 x2x2x2x2 Min z = 5 x x 2 4 x 1 - x 2 > 12 x 1 + x 2 > 4 Min z = 5 x x 2 4 x 1 - x 2 > 12 x 1 + x 2 > 4 2 x x 2 > 10 Optimal: x 1 = 16/5 x 2 = 4/5 x 2 = 4/5 2 x x 2 > 10 Optimal: x 1 = 16/5 x 2 = 4/5 x 2 = 4/5 x1x1x1x1 x1x1x1x1

Kerimcan OzcanMNGT 379 Operations Research15 Example 2: A Minimization Problem

Kerimcan OzcanMNGT 379 Operations Research16 Example 2: A Minimization Problem

Kerimcan OzcanMNGT 379 Operations Research17 Feasible Region The feasible region for a two-variable LP problem can be nonexistent, a single point, a line, a polygon, or an unbounded area. Any linear program falls in one of three categories:  is infeasible  has a unique optimal solution or alternate optimal solutions  has an objective function that can be increased without bound A feasible region may be unbounded and yet there may be optimal solutions. This is common in minimization problems and is possible in maximization problems.

Kerimcan OzcanMNGT 379 Operations Research18 Special Cases Alternative Optimal Solutions In the graphical method, if the objective function line is parallel to a boundary constraint in the direction of optimization, there are alternate optimal solutions, with all points on this line segment being optimal. Infeasibility A linear program which is overconstrained so that no point satisfies all the constraints is said to be infeasible. Unboundedness (See example on upcoming slide.)

Kerimcan OzcanMNGT 379 Operations Research19 Example: Infeasible Problem Solve graphically for the optimal solution: Max 2x 1 + 6x 2 s.t. 4x 1 + 3x 2 < 12 2x 1 + x 2 > 8 x 1, x 2 > 0 x2x2x2x2 x1x1x1x1 4 x x 2 < 12 2 x 1 + x 2 >

Kerimcan OzcanMNGT 379 Operations Research20 Example: Unbounded Problem Solve graphically for the optimal solution: Max 3x 1 + 4x 2 s.t. x 1 + x 2 > 5 3x 1 + x 2 > 8 x 1, x 2 > 0 x2x2x2x2 x1x1x1x1 3x 1 + x 2 > 8 x 1 + x 2 > 5 Max 3x 1 + 4x

Kerimcan OzcanMNGT 379 Operations Research21 Using Management Scientist 6.0 Change the optimization type Min 3x 1 + 4x 2 s.t. x 1 + x 2 > 5 3x 1 + x 2 > 8 x 1, x 2 > 0 OPTIMAL SOLUTION Objective Function Value = Variable Value Reduced Costs X X Constraint Slack/Surplus Dual Prices OBJECTIVE COEFFICIENT RANGES Variable Lower Limit Current Value Upper Limit X X No Upper Limit RIGHT HAND SIDE RANGES Constraint Lower Limit Current Value Upper Limit No Upper Limit 2 No Lower Limit

Kerimcan OzcanMNGT 379 Operations Research22 Problem 22, p. 74

Kerimcan OzcanMNGT 379 Operations Research23 Problem 22, p. 74 (cont.)

Kerimcan OzcanMNGT 379 Operations Research24 Problem 43, p. 80