EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
CHAPTER 4 CONDUCTION IN SEMICONDUCTORS
Advertisements

L3 January 221 Semiconductor Device Modeling and Characterization EE5342, Lecture 3-Spring 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011 Professor Ronald L. Carter
Metal-semiconductor (MS) junctions
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lectures P-N diode in equilibrium So far we studied:  Energy bands, doping, Fermi.
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
Lecture Number 4: Charge Transport and Charge Carrier Statistics Chem 140a: Photoelectrochemistry of Semiconductors.
Chapter 2 Motion and Recombination
Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.
Lecture 7: IC Resistors and Capacitors
Dr. Nasim Zafar Electronics 1 EEE 231 – BS Electrical Engineering Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
L 04 Sept 041 EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2003 Professor Ronald L. Carter
Drift and Diffusion Current
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
Lecture 4 OUTLINE Semiconductor Fundamentals (cont’d)
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
L04 24Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter
Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EXAMPLE 4.1 OBJECTIVE Solution Comment
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE105 - Spring 2007 Microelectronic Devices and Circuits
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
Semiconductor Device Physics
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L04,... June 11,...1 Electronics I EE 2303/602 - Summer ‘01 Lectures 04,... Professor Ronald L. Carter
L4 January 271 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2005 Professor Ronald L. Carter
EE130/230A Discussion 10 Peng Zheng.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 4 – Spring 2011 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter

L 06 Sept 10 Second Assignment Please print and bring to class a signed copy of the document appearing at 2

L 06 Sept 103 Approximate  func- tion for extrinsic, compensated n-Si 1 Param.AsP  min  max N ref 9.68e169.20e16   N d >  N a  n-type n o =  N d -  N a  = n o q  n N I =  N d +  N a N As > N P  As par N P > N As  As par p o = n i 2 /n o

L 06 Sept 104 Approximate  func- tion for extrinsic, compensated p-Si 1 ParameterB  min 44.9  max N ref 2.23e17   N a >  N d  p-type p o =  N a -  N d  = p o q  p N I =  N d +  N a N a = N B  B par n o = n i 2 /p o

L 06 Sept 105 Net silicon extr resistivity (cont.) Since  = (nq  n + pq  p ) -1, and  n >  p, (  = q  /m*) we have  p >  n, for the same N I Note that since 1.6(high conc.) <  p /  n < 3(low conc.), so 1.6(high conc.) <  n /  p < 3(low conc.)

L 06 Sept 106 Net silicon (com- pensated) res. For an n-type (n >> p) compensated semiconductor,  = (nq  n ) -1 But now n = N  N d - N a, and the mobility must be considered to be determined by the total ionized impurity scattering N d + N a  N I Consequently, a good estimate is  = (nq  n ) -1 = [Nq  n (N I )] -1

Figure 1.16 (p. 31 M&K) Electron and hole mobilities in silicon at 300 K as functions of the total dopant concentration. The values plotted are the results of curve fitting measurements from several sources. The mobility curves can be generated using Equation with the following values of the parameters [3] (see table on next slide). L 06 Sept 107

8 Summary The concept of mobility introduced as a response function to the electric field in establishing a drift current Resistivity and conductivity defined  (N d,N a,T) model equation developed Resistivity models developed for extrinsic and compensated materials

L 06 Sept 109 Equipartition theorem The thermodynamic energy per degree of freedom is kT/2 Consequently,

L 06 Sept 1010 Carrier velocity saturation 1 The mobility relationship v =  E is limited to “low” fields v < v th = (3kT/m*) 1/2 defines “low” v =  o E[1+(E/E c )  ] -1/ ,  o = v 1 /E c for Si parameter electrons holes v 1 (cm/s) 1.53E9 T E8 T E c (V/cm) 1.01 T T 1.68  2.57E-2 T T 0.17

L 06 Sept 1011 Carrier velocity 2 carrier velocity vs E for Si, Ge, and GaAs (after Sze 2 )

L 06 Sept 1012 Carrier velocity saturation (cont.) At 300K, for electrons,  o = v 1 /E c = 1.53E9(300) /1.01(300) 1.55 = 1504 cm 2 /V-s, the low-field mobility The maximum velocity (300K) is v sat =  o E c = v 1 = 1.53E9 (300) = 1.07E7 cm/s

L 06 Sept 1013 Diffusion of Carriers (cont.)

L 06 Sept 1014 Diffusion of carriers In a gradient of electrons or holes,  p and  n are not zero Diffusion current,  J =  J p +  J n (note D p and D n are diffusion coefficients)

L 06 Sept 1015 Diffusion of carriers (cont.) Note (  p) x has the magnitude of dp/dx and points in the direction of increasing p (uphill) The diffusion current points in the direction of decreasing p or n (downhill) and hence the - sign in the definition of  J p and the + sign in the definition of  J n

L 06 Sept 1016 Current density components

L 06 Sept 1017 Total current density

L 06 Sept 1018 Doping gradient induced E-field If N = N d -N a = N(x), then so is E f -E fi Define  = (E f -E fi )/q = (kT/q)ln(n o /n i ) For equilibrium, E fi = constant, but for dN/dx not equal to zero, E x = -d  /dx =- [d(E f -E fi )/dx](kT/q) = -(kT/q) d[ln(n o /n i )]/dx = -(kT/q) (1/n o )[dn o /dx] = -(kT/q) (1/N)[dN/dx], N > 0

L 06 Sept 1019 Induced E-field (continued) Let V t = kT/q, then since n o p o = n i 2 gives n o /n i = n i /p o E x = - V t d[ln(n o /n i )]/dx = - V t d[ln(n i /p o )]/dx = - V t d[ln(n i /|N|)]/dx, N = -N a < 0 E x = - V t (-1/p o )dp o /dx = V t (1/p o )dp o /dx = V t (1/N a )dN a /dx

L 06 Sept 1020 The Einstein relationship For E x = - V t (1/n o )dn o /dx, and J n,x = nq  n E x + qD n (dn/dx) = 0 This requires that nq  n [V t (1/n)dn/dx] = qD n (dn/dx) Which is satisfied if

L 06 Sept 1021 Silicon Planar Process 1 M&K 1 Fig. 2.1 Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) oxide removal, (c) deposition of dopant atoms, (d) diffusion of dopant atoms into exposed regions of silicon.

L 06 Sept 1022 LOCOS Process 1 1 Fig 2.26 LOCal Oxidation of Silicon (LOCOS). (a) Defined pattern consisting of stress-relief oxide and Si 3 N 4 where further oxidation is not desired, (b) thick oxide layer grown over the bare silicon region, (c) stress- relief oxide and Si 3 N 4 removed by etching, (d) scanning electron micrograph (5000 X) showing LOCOS- processed wafer at (b).

L 06 Sept 1023 Al Interconnects 1 1 Figure 2.33 (p. 104) A thin layer of aluminum can be used to connect various doped regions of a semiconductor device. 1

L 06 Sept 1024 Ion Implantation 1 1 Figure 2.15 (p. 80) In ion implantation, a beam of high-energy ions strikes selected regions of the semiconductor surface, penetrating into these exposed regions.

L 06 Sept 1025 Phosphorous implant Range (M&K 1 Figure 2.17) Projected range R p and its standard devia- tion  R p for implantation of phosphorus into Si, SiO 2, Si 3 N 4, and Al [M&K ref 11].

L 06 Sept 1026 Implant and Diffusion Profiles Figure Complementary- error-function and Gaussian distribu- tions; the vertical axis is normalized to the peak con- centration Cs, while the horizon- tal axis is normal- ized to the char- acteristic length

L 06 Sept 1027 Diffused or Implanted IC Resistor (Fig )

L 06 Sept 1028 An IC Resistor with L = 8W (M&K) 1

L 06 Sept 1029 Typical IC doping profile (M&K Fig )

L 06 Sept 1030 Mobilities**

L 06 Sept 1031 IC Resistor Conductance

L 06 Sept 1032 An IC Resistor with N s = 8, R = 8R s (M&K) 1

L 06 Sept 1033 The effect of lateral diffusion (M&K 1 )

L 06 Sept 1034 A serpentine pattern IC Resistor (M&K 1 ) R = N S R S  N C R S note: R C = 0.65  R S

L 06 Sept 1035 Band model review (approx. to scale) qm~4+Vqm~4+V EoEo E Fm E Fp E Fn EoEo EcEc EvEv E Fi q  s,n q  s ~ 4 + V EoEo EcEc EvEv E Fi q  s,p metaln-type s/cp-type s/c q  s ~ 4 + V

L 06 Sept 1036 Making contact be- tween metal & s/c Equate the E F in the metal and s/c materials far from the junction E o (the free level), must be continuous across the jctn. N.B.: q  = 4.05 eV (Si), and q  = q   E c - E F EoEo EcEc EFEF E Fi EvEv q  (electron affinity) qFqF qq (work function)

L 06 Sept 1037 Ideal metal to p-type barrier diode (  m <  s ) E Fp EoEo EcEc EvEv E Fi q  s,p qsqs p-type s/c qmqm E Fm metal q  Bn qV bi q  p <0 No disc in E o E x =0 in metal ==> E o flat  Bn =  m -  s = elec mtl to s/c barr V bi =  Bp -  s,p = hole s/c to mtl barr Depl reg

L 06 Sept 1038 Ideal metal to n-type barrier diode (  m >  s,V a =0) E Fn EoEo EcEc EvEv E Fi q  s,n qsqs n-type s/c qmqm E Fm metal q  Bn qV bi q’nq’n No disc in E o E x =0 in metal ==> E o flat  Bn =  m -  s = elec mtl to s/c barr V bi =  Bn -  n =  m -  s elect s/c to mtl barr Depl reg

L 06 Sept 1039 Ideal metal to n-type Schottky (V a >0) qV a = E fn - E fm Barrier for electrons from sc to m reduced to q(V bi -V a ) q  Bn the same DR decr E Fn EoEo EcEc EvEv E Fi q  s,n qsqs n-type s/c qmqm E Fm metal q  Bn q(V bi -V a ) q’nq’n Depl reg

L 06 Sept 1040 References 1 Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, See Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996, for another treatment of the  model. 2 Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, Semiconductor Physics & Devices, 2nd ed., by Neamen, Irwin, Chicago, 1997.