Denis Bulaev Department of Physics University of Basel, Switzerland Spectral Properties of a 2D Spin-Orbit Hamiltonian.

Slides:



Advertisements
Similar presentations
Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors (arXiv: ) Vladimir Cvetkovic.
Advertisements

Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Searching for Majorana fermions in semiconducting nano-wires Pedram Roushan Peter O’Malley John Martinis Department of Physics, UC Santa Barbara Borzoyeh.
Electronic states of finite length carbon nanotubes Yuki Tatsumi, Wataru Izumida Tohoku University, Department of Physics Outline  Background “SWNT quantum.
Spin-orbit coupling in graphene structures D. Kochan, M. Gmitra, J. Fabian Stará Lesná,
Coulomb versus spin-orbit interaction in carbon-nanotube quantum dots Andrea Secchi and Massimo Rontani CNR-INFM Research Center S3 and University of Modena,
Igor Aleiner (Columbia) Theory of Quantum Dots as Zero-dimensional Metallic Systems Physics of the Microworld Conference, Oct. 16 (2004) Collaborators:
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Spin transport in spin-orbit coupled bands
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
DYNAMICAL PROPERTIES OF THE ANISOTROPIC TRIANGULAR QUANTUM
Optical study of Spintronics in III-V semiconductors
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
The Application and Calculation of Bond Orbital Model on Quantum Semiconductor 鍵結軌道理論在量子半導體之應用 與計算.
Quantum Dots and Spin Based Quantum Computing Matt Dietrich 2/2/2007 University of Washington.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Review: S.O. Coupling in Atomic Physics
IWCE, Purdue, Oct , 2004 Seungwon Lee Exchange Coupling in Si-Quantum-Dot-Based Quantum Computer Seungwon Lee 1, Paul von Allmen 1, Susan N. Coppersmith.
GaAs QUANTUM DOT COM Ray Murray. Why Quantum Dots? Novel “atom-like” electronic structure Immunity to environment Epitaxial growth Well established device.
Enhancement of Kondo effect through Rashba spin-orbit interactions. Nancy Sandler Dept. of Physics and Astronomy Ohio University In collaboration with:
Study on the Diluted Magnetic Semiconductors QSRC, Dongguk University
Dynamical decoupling in solids
Computational Solid State Physics 計算物性学特論 第4回 4. Electronic structure of crystals.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Lecture 2 Magnetic Field: Classical Mechanics Magnetism: Landau levels Aharonov-Bohm effect Magneto-translations Josep Planelles.
Nanomaterials – Electronic Properties Keya Dharamvir.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
QIC 890/891: A tutorial on Nanowires in Quantum Information Processing QIC 890/891: A tutorial on Nanowires in Quantum Information Processing Daryoush.
Interface-induced lateral anisotropy of semiconductor heterostructures M.O. Nestoklon, Ioffe Physico-Technical Institute, St. Petersburg, Russia JASS 2004.
Rajib Rahman Orbital Stark Shift of donor-interface states Lansbergen, Rahman, GK, LH, SR, Nature Physics, 4, 656 (2008) ε Oxide-Si-impurity ε=0 Donor-interface.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Tami Pereg-Barnea McGill University CAP Congress, June 16, 2014.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Seung Hyun Park Hyperfine Mapping of Donor Wave Function Deformations in Si:P based Quantum Devices Seung Hyun Park Advisors: Prof. Gerhard Klimeck Prof.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Optical pure spin current injection in graphene Julien Rioux * and Guido Burkard Department of Physics, University of Konstanz, D Konstanz, Germany.
M.M. Asmar & S.E. Ulloa Ohio University. Outline Motivation. The studied system and the mathematical approach. Results and analysis. Conclusions.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Electron-nuclear spin dynamics in optically pumped semiconductor quantum dots K.V.Kavokin A.F.Ioffe Physico-Technical Institute, St.Petersburg, Russia.
Single Electron Spin Resonance with Quantum Dots Using a Micro-magnet Induced Slanting Zeeman Field S. Tarucha Dep. of Appl. Phys. The Univ. of Tokyo ICORP.
1 Quantum Computation with coupled quantum dots. 2 Two sides of a coin Two different polarization of a photon Alignment of a nuclear spin in a uniform.
1 Department of Physics , University at Buffalo, SUNY APS March Meeting 2015 Phonon mediated spin relaxation in a moving quantum dot: Doppler shift, Cherenkov.
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Topological Insulators Effects of spin on transport of electrons in solids.
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Spin-orbit interaction in semiconductor quantum dots systems
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Spin-Orbit Coupling. Spin-Orbit Coupling First Some General Comments An Important (in some cases) effect we’ve left out! We’ll discuss it mainly for terminology.
Thermal Strain Effects in Germanium Thin Films on Silicon Travis Willett-Gies Nalin Fernando Stefan Zollner.
Spin-Orbit Coupling (SOC) Parameters in Si/SiGe QWs: Structure (SIA) and Bulk (BIA) Inversion Asymmetry Objective: Previous theoretical models for T2.
6/25/2018 Nematic Order on the Surface of three-dimensional Topological Insulator[1] Hennadii Yerzhakov1 Rex Lundgren2, Joseph Maciejko1,3 1 University.
Interaction between Photons and Electrons
Gauge structure and effective dynamics in semiconductor energy bands
Lecture 2:
The k∙p Method Brad Malone Group Meeting 4/24/07.
Atomic BEC in microtraps: Heisenberg microscopy of Zitterbewegung
FAM Mirko Rehmann March
Novel quantum states in spin-orbit coupled quantum gases
Electrons in Atoms - continued
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
Hole Spin Decoherence in Quantum Dots
Hiroyuki Nojiri, Department of Physics, Okayama University
Presentation transcript:

Denis Bulaev Department of Physics University of Basel, Switzerland Spectral Properties of a 2D Spin-Orbit Hamiltonian

Outline Motivation k.p method 2DEG Quantum Dots Summary

….. Quantum Computing Supercoducting [ A.Shnirman, G.Shön, Z.Herman, PRL 79, 2371 (1997)] Quantum-Dot-based [D.Loss and D.P.DiVincenzo, PRA 57, 120 (1998)]Motivation Nano’ll make $1T/yr by 2015

k.p method Pauli HamiltonianThomas term (s-o coupling)

Inversion asymmetric strs. (T d ) TdTd E8 C 3 3 C 2 6  6 S 4   111   2200   30 1   301 E k EgEg  15 11 CB l=0 (s) j=l+s=1/2 VB l=1 (p) j=3/2 & 1/2 Bir and Pikus. Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).

Inversion asymmetric strs. (T d ) E k EgEg  j=3/2  8  j=1/2  6 E k  15 l=1  1 l=0 Single group Double group  j=1/2  7  D x  1 =  6 D x  15 =  7 +  8 Optical Orientation, ed. by Zakharchenya and F. Meier (North - Holland, Amsterdam, 1984) Bir and Pikus. Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).

Kane Hamiltonian Folding down

Electron effective Hamiltonian Dresselhaus SO (DSO) coupling (GaAs, InAs, InSb, etc - inversion asymmetry) For Ge, Si - inversion symmetric strs (point group O h = T d x C i ) DSO = 0! Remark No. 1 DSO is due to bulk inversion asymmetry (BIA) Dresselhaus, Phys. Rev. 100, 580 (1955).

2DEG GaAs Al x Ga 1-x As GaAs z V(z) z D 2d (E; C 2 ; 2C 2 ; 2  d ; 2S 4 ) C 2v (E; C 2 ; 2  v ) Al x Ga 1-x As Al y Ga 1-y As

Dresselhaus SO interaction D'yakonov & Kocharovskii, Sov. Phys. Semicond. 20, 110 (1986)

Rashba SO interaction After folding down Bychkov & Rashba, JETP Lett. 39, 78 (1984). Remark No. 2 RSO is due to structure inversion asymmetry (SIA)

Spin degeneracy & splitting without SO couplingwith SO coupling time inversion symmetry (Krames degeneracy) space inversion symmetryspace inversion asymmetry spin degeneracyspin splitting

Energy spectrum of 2DEG Ganichev, et al., PRL 92, (2004).

Spin decoherence anisotropy Averkiev & Golub PRB 60, (1999). Remark No. 3 SO coupling leads to anisotropy in dispersion and spin decoherence

Effective Hamiltonian for a QD

Canonical transformation Geyler, Margulis, Shorokhov, PRB 63, (2001).

Dresselhaus SO coupling Rashba SO coupling Anti-crossing (crossing) of the levels E 2 and E 3 at Three lowest electron energy levels

Energy [meV] B [T] E 2 – E 1 E 3 – E 1 E 1 – E 1 orbital Zeeman Anticrossing due to Rashba coupling Bulaev, Loss, PRB 71, (2005).

Summary SO coupling is due to space inversion asymmetry Dispersion anisotropy in a 2DEG Anticrossing due to RSO in a QD