Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman Interference and correlations in two-level dots Phys. Rev. B 75, 115313 (2007) Also:

Slides:



Advertisements
Similar presentations
Equations-of-motion technique applied to quantum dot models
Advertisements

I.L. Aleiner ( Columbia U, NYC, USA ) B.L. Altshuler ( Columbia U, NYC, USA ) K.B. Efetov ( Ruhr-Universitaet,Bochum, Germany) Localization and Critical.
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Correlations in quantum dots: How far can analytics go? ♥ Slava Kashcheyevs Amnon Aharony Ora Entin-Wohlman Phys.Rev.B 73, (2006) PhD seminar on.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Chernogolovka, September 2012 Cavity-coupled strongly correlated nanodevices Gergely Zaránd TU Budapest Experiment: J. Basset, A.Yu. Kasumov, H. Bouchiat,
Improved Description of Electron-Plasmon coupling in Green’s function calculations Jianqiang (Sky) ZHOU, Lucia REINING 1ETSF YRM 2014 Rome.
Igor Aleiner (Columbia) Theory of Quantum Dots as Zero-dimensional Metallic Systems Physics of the Microworld Conference, Oct. 16 (2004) Collaborators:
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
The Coulomb Blockade in Quantum Boxes Avraham Schiller Racah Institute of Physics Eran Lebanon (Hebrew University) Frithjof B. Anders (Bremen University)
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Introduction to the Kondo Effect in Mesoscopic Systems.
Axel Freyn, Ioannis Kleftogiannis and Jean-Louis Pichard
Theory of the Quantum Mirage*
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Capri spring school, April 2009 With collaborators: P. Mehta - Princeton C. Bolech - Rice A. Jerez - NJIT, Rutgers G. Palacios - Rutgers N. Andrei - Rutgers.
Electron Entanglement via interactions in a quantum dot Gladys León 1, Otto Rendon 2, Horacio Pastawski 3, Ernesto Medina 1 1 Centro de Física, Instituto.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
Kondo, Fano and Dicke effects in side quantum dots Pedro Orellana UCN-Antofagasta.
Slava Kashcheyevs Bernd Kästner (PTB, Braunschweig, Germany) Mark Buitelaar (University of Cambridge, UK) AAMP’2008, Ratnieki, Latvia Low-frequency excitation.
Correlations in quantum dots: How far can analytics go?
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
The Two Channel Kondo Effect (The breakdown of the Fermi liquid paradigm in quantum dots: theory and experiment) Department of Condensed Matter Physics.
Vyacheslavs (Slava) Kashcheyevs Collaboration: Christoph Karrasch, Volker Meden (RTWH Aachen U., Germany) Theresa Hecht, Andreas Weichselbaum (LMU Munich,
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
History of superconductivity
Population Switching and Charge Sensing in Quantum Dots: A case for Quantum Phase Transitions Moshe Goldstein (Bar-Ilan Univ., Israel), Richard Berkovits.
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
Spin filtering in mesoscopic systems Shlomi Matityahu, Amnon Aharony, Ora Entin-Wohlman Ben-Gurion University of the Negev Shingo Katsumoto University.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
2LSU(2) regime: competition between Kondo and Intermediate Valence (a numerical collaboration) George Martins Physics Department Oakland University Carlos.
Hisao Hayakawa (YITP, Kyoto University) based on collaboration with T. Yuge, T. Sagawa, and A. Sugita 1/24 44 Symposium on Mathematical Physics "New Developments.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Coupling quantum dots to leads:Universality and QPT
Charge pumping in mesoscopic systems coupled to a superconducting lead
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Relation between the Anderson model and the s-d model Miyake Lab. Akiko Shiba Ref.) J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149 (1966) 491.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Quantum entanglement, Kondo effect, and electronic transport in
Robert Konik, Brookhaven National Laboratory Hubert Saleur,
with Masaki Oshikawa (UBC-Tokyo Institute of Technology)
Low energy approach for the SU(N) Kondo model
Spin-triplet molecule inside carbon nanotube
Presentation transcript:

Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman Interference and correlations in two-level dots Phys. Rev. B 75, (2007) Also: Silvestrov & Imry, PRB 75, (2007) Lee & Kim, PRL 98, (2007)

gate voltage Conductance Motivation Avinun-Kalish et al.,Nature 436 (2005) Schuster et al., Nature 385 (1997) Phase “Phase lapse”

Motivation continued Entin-Wohlman, Hartzstein & Imry (1986) Silva, Oreg & Gefen (2002) Entin-Wohlman,Aharony, Levinson&Imry (2002) Destructive interference – several paths through the dot Non-interacting model gives either 0 or π phase change between the resonances U Explicit on-site Coulomb interaction Interaction-based qualitative explanation of the phase lapse universality: Silvestrov & Imry PRL 85 (2000) ε1ε1 ε2ε2

Motivation continued U Non-monotonic level filling and population inversion –Silvestrov & Imry (2000) [mechanism & PT] –König & Gefen PRB 71 (2005) [perturbation in tunneling] –Sindel, Silva, Oreg & von Delft PRB 72 (2005) [NRG & Hartree-Fock] Transmission zeros and “phase lapses” –Silvestrov & Imry (2000) –Meden & Marquardt PRL (2006) [functional RG and NRG] –Golosov & Gefen PRB 74(2006) [Hartree-Fock (mean field)] –Karrasch,Hecht,Weichselbaum,Oreg, vonDelft & Meden PRL(2007) [NRG & fRG] Orbital Kondo physics (“Correlation-induced” resonances) ε1ε1 ε2ε2 Two orbital levels Two leads On-site repulsion U Spinless electrons

Non-monotonic level filling and population inversion –Silvestrov & Imry (2000) [mechanism & PT] –König & Gefen PRB 71 (2005) [perturbation in tunneling] –Sindel, Silva, Oreg & von Delft PRB 72 (2005) [NRG & Hartree-Fock] Transmission zeros and “phase lapses” –Silvestrov & Imry (2000) –Meden & Marquardt PRL (2006) [functional RG and NRG] –Golosov & Gefen PRB 74(2006) [Hartree-Fock (mean field)] –Karrasch,Hecht,Weichselbaum,Oreg, vonDelft & Meden PRL(2007) [NRG & fRG] Orbital Kondo physics (“Correlation-induced” resonances) Questions to answer  Accurate methods… –either numrical only –or too narrow validity range  Hard to sample parameter space –symmetric (1-2 or L-R) cases are non-generic ? Underlying energy scales ? Role of many-body correlations ? Unifying geometrical picture

Outline Original spinless 2 levels x 2 leads Equivalent Anderson model 1 spinful level x 1 ferromagnetic lead Anisotropic Kondo model in a titled magnetic field Use exact solution (Bethe ansatz) Exact mapping Schrieffer-Wolff transformation V↑ = V↓ U >> Γ Observables n 1, n 2, t Isotropic Kondo with a field Inverse mapping, Friedel sum rule

The model: notation Two orbital levels Two leads Level spacing h On-site Coulomb U No symmetry imposed on a αi ( wide band, D>>U) ε 0 +h/2 ε 0 – h/2 U

Singular value decomposition Diagonalize the tunneling matrix: Define new degrees of freedom The pseudo-spin is conserved in tunneling!

Singular value decomposition Diagonalize the tunneling matrix: Define new degrees of freedom R d, R l are orthogonal matrices

Map onto Anderson scalar spin vector in a tilted magnetic field two preferred directions!

Outline Original spinless 2 levels x 2 leads Equivalent Anderson model 1 spinful level x 1 ferromagnetic lead Use exact solution (Bethe ansatz) Exact mapping V↑ = V↓ Observables n 1, n 2, t Inverse mapping, Friedel sum rule

Solvable case: isotropic V “Standard” Anderson: In terms of original couplings: At T=0, an exact solution is possible for n 1, n 2 Numerical solution of Bethe ansatz equations fixed Wiegman (1980); Okiji & Kawakami (1982) one preferred direction

Exact results for isotropic AM Friedel-Langreth sum rule: Γ Γ=πρ |V| 2 U n1n2n1n2 n 1 +n 2 ≈ 1 |t| 2 arg t Glazman & Raikh Local moment  single occupancy Polarization  charge localization Correlation-driven competition (see later) No phase lapse

Outline Original spinless 2 levels x 2 leads Equivalent Anderson model 1 spinful level x 1 ferromagnetic lead Anisotropic Kondo model in a titled magnetic field Exact solution (Bethe ansatz) Exact mapping Schrieffer-Wolff transformation V↑ = V↓ U >> Γ Observables n 1, n 2, t Isotropic Kondo in with a field Inverse mapping, Friedel sum rule

Magnetic insights… A quantum dot with ferromagnetic leads –V ↑ ≠ V ↓ generates additional local field –the physics: renormalization of level positions We shall translate back to the charge problem: –Polarization in magnetic field competes with Kondo screening –2D twist: the bare & the extra fields are not aligned => spin rotations Martinek et al., PRL ; (2003) Pasupathy et al., Science 306, 86 (2004) effective Zeeman field

Mapping onto a Kondo model Schrieffer-Wolff in CB valley ( U >> Γ, h ) … –anisotropic exchange –effective field

Poor man’s scaling gives T K Anisotropy is RG irrelevant –use results for isotropic Kondo model in Mapping onto a Kondo model Schrieffer-Wolff in CB valley ( U >> Γ, h ) … –anisotropic exchange –effective field

Bethe ansatz for isotropic Kondo model by Andrei &Lowenstein (1980) Geometrical interpretation Known function M K Project onto original 1-2 direction Magnetization is determined by the field Transmission L-R: phase shifts via sum rule generalized Glazman-Raikh

An example Numbers from Fig.5 of PRL 96, (2006) Γ ↑ = 0.97 Γ tot Γ ↓ = 0.03 Γ tot θ d =31º θ l = 62º Changing gate voltage ε 0 leads to effective field rotation! SVD angles reflect asymmetry in tunneling U/Γ tot =3

Small spacing : correlations h=0.01

ε0ε0 ε 0 = – U/2 Small spacing : correlations h tot θhθh M n 1 -n 2 TKTK |t| 2 Population inversion Silvestrov & Imry (2000)  Phase lapse by π Silvestrov & Imry (2000) h=0.01 “Correlation-induced resonances” Meden & Marquardt (2006)

h tot θhθh M n 1 -n 2 ε0ε0 ε 0 = – U/2 |t| 2 h=0.1 Intermediate spacing: rotations θlθl θ d +90º Göres et al., PRB 62, 2188(2000) Fano resonances!

Occupations numbers and transmission amplitude are always* smooth Generic, sharp π -jump of phase for The population inversion and the phase lapse need not to coincide Relevant energy scales Range of ε 0 -dependent component Transversal projection of level spacing Kondo correlation scale

Compare to other methods Both h eff and T K depend on ε 0 but h = 0 fRG h eff ≈ T K => M=1/4 h eff = 0 h eff >T K

Summary and outlook Results –Unified picture of both correlated and perturbative behavior –Accurate analytical estimates Work in progress –many levels & statistics of phase lapses Other issues –charge fluctuations (mixed valence)? –physical spin?

Kashcheyevs

Glazman-Raikh as 2x1 SVD Only one combination couples to the dot Scattering of the coupled mode Langreth (1966) For, “unitarity limit” VLVL VRVR L R Glazman-Raikh rotation (1988)

Example: h=0 (degenerate) h tot θhθh M n 1 -n 2 ε0ε0 ε 0 = – U/2 TKTK |t| 2

Conductance in isotropic case For h || z, spin is conserved Rotations imply Friedel sum rule 0 π/2 ↑-↓ phase shift difference

Bethe results An isotropic Kondo model in external field Use exact Bethe ansatz Key quantities Return back Local moment here: