Oct 2001 1 Monolithic pixel detector Update  One chip combining both sensor and read-out – source of ionization e- : epitaxial layer of chip – e- collected.

Slides:



Advertisements
Similar presentations
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Advertisements

J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy
G. RizzoSuperB WorkShop – 17 November R&D on silicon pixels and strips Giuliana Rizzo for the Pisa BaBar Group SuperB WorkShop Frascati-17 November.
1 Full-size Monolithic Active Pixel Sensors in SOI Technology - design considerations, simulations and measurements results on behalf of: M. Jastrzab,
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec.
Chronopixel R&D status – May 2014 N. B. Sinev University of Oregon, Eugene In collaboration with J.E.Brau, D.M.Strom (University of Oregon, Eugene, OR),
CMOS image sensors Presenter: Alireza eyvazzadeh.
CLIC Collaboration Working Meeting: Work packages November 3, 2011 R&D on Detectors for CLIC Beam Monitoring at LBNL and UCSC/SCIPP Marco Battaglia.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Development of Readout ASIC for FPCCD Vertex Detector 01 October 2009 Kennosuke.Itagaki Tohoku University.
Chronopixel status N. B. Sinev University of Oregon, Eugene In collaboration with J.E.Brau, D.M.Strom (University of Oregon, Eugene, OR), C.Baltay, W.Emmet,
1 Nick Sinev LCWS08, University of Illinois at Chicago November 18, 2008 Status of the Chronopixel project J. E. Brau, N. B. Sinev, D. M. Strom University.
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Status of the R&D on MAPS in Strasbourg and Frankfurt Outline: Operation principle of MAPS (a reminder) Fast readout Radiation hardness System integration.
IFIC projects for the ILC IFIC – Valencia J. Fuster, C. Lacasta, P. Modesto, M. Vos, C. Alabau, A. Faus- Golfe, J. Resta, I. Carbonell IFIC - INSTITUTO.
LCFI Collaboration Status Report LCUK Meeting Oxford, 29/1/2004 Joel Goldstein for the LCFI Collaboration Bristol, Lancaster, Liverpool, Oxford, QMUL,
Building blocks 0.18 µm XFAB SOI Calice Meeting - Argonne 2014 CALIIMAX-HEP 18/03/2014 Jean-Baptiste Cizel - Calice meeting Argonne 1.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
ASIC R&D at Fermilab R. Yarema October 30, Long Range Planning Committee2 ASICs are Critical to Most Detector Systems SVX4 – CDF & DO VLPC readout.
J. Crooks STFC Rutherford Appleton Laboratory
PHASE-1B ACTIVITIES L. Demaria – INFN Torino. Introduction  The inner layer of the Phase 1 Pixel detector is exposed to very high level of irradiation.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
General status and plan Carried out extensive testing, obtained working pixels and promising radiation tolerance, just submitted engineering run 2013.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
A. Rivetti Villa Olmo, 7/10/2009 Lepix: monolithic detectors for particle tracking in standard very deep submicron CMOS technologies. A. RIVETTI I.N.F.N.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
PIXEL Slow Simulation Xin Li 3/16/2008. CMOS Active Pixel Sensor (APS) Epitaxy is a kind of interface between a thin film and a substrate. The term epitaxy.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
Pixel detector development: sensor
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
1 Nick Sinev, ALCPG March 2011, Eugene, Oregon Investigation into Vertex Detector Resolution N. B. Sinev University of Oregon, Eugene.
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Chronopixel R&D status – October 2013 N. B. Sinev University of Oregon, Eugene In collaboration with J.E.Brau, D.M.Strom (University of Oregon, Eugene,
J. Brau LCWS 2006 March, J. Brau LCWS Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
(Re)design of the C3PD analog pixel 1. The starting point for the design was the CCPDv3 front-end (this presentation tries to follow the way the design.
Monolithic CMOS Pixel Detectors for ILC Vertex Detection C. Baltay, W. Emmet, D. Rabinowitz Yale University Jim Brau, N. Sinev, D. Strom University of.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
Silicon strip detector R&D issues –readout chip decision –interface with PHENIX –ladder Technical options –SVX4 or MVD-TGV+AMU/ADC recut –other sensors.
Hybrid CMOS strip detectors J. Dopke for the ATLAS strip CMOS group UK community meeting on CMOS sensors for particle tracking , Cosenors House,
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
Timing capabilities of Ultra-Fast Silicon Detector 1 A parameterization of time resolution A program to calculate Time resolution UFSD Timing capabilities.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford for LCFI collaboration LCWS2008, 17 November 2008 Column Parallel CCD and Raw Charge Storage.
TCT measurements of HV-CMOS test structures irradiated with neutrons I. Mandić 1, G. Kramberger 1, V. Cindro 1, A. Gorišek 1, B. Hiti 1, M. Mikuž 1,2,
Advanced Monolithic Active Pixel Sensors with full CMOS capability for tracking, vertexing and calorimetry Marcel Stanitzki STFC-Rutherford Appleton Laboratory.
Design consideration on thin LGAD sensors
Charge sensitive amplifier
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
Min FU (co-PhD student of IPHC, Strasbourg, France
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
R&D of CMOS pixel Shandong University
Presentation transcript:

Oct Monolithic pixel detector Update  One chip combining both sensor and read-out – source of ionization e- : epitaxial layer of chip – e- collected by a n-well – elegant, thin solution, or detector of the far future?  Progress on four known problems

Oct Problem # 1  fillFactory.com manufactures optical pixel-sensors with collection from epitaxial layer (US patent)  n-well to collect ionisation e- restricts transistors to n-MOS  makes it difficult to have on pixel electronics, amplifiers etc.

Oct Possible Solution to Problem #1  ISU engineers, add n-wells to house p-MOS transistors  p+ layer keeps potential minimum for ionization electrons to diffuse to collection n-well  foundry issues? simulation? n+ p-MOS n-MOS

Oct Problem #2 Quality of Silicon, Thickness epi-layer  LEPSI group used Austrian Mikro Systeme –17 micron epi-layer »1000 e-  STAR reproduced LEPSI work, used MOSES –8 micron epi-layer  Still an unresolved issue

Oct Problem #3: Existing Monolithic Slow  Current monolithic pixel detector (LEPSI) had one ADC per chip –very slow  Two designs being worked on by ISU engineers –copy circuit from active imaging devices »on each pixel, free-running pre-amplifier »sample-hold preamplifier output upon a Lvl1 signal »on each column, 3-4 bit flash ADC. (~1000 ADCs) »access sample/hold from each pixel and digitize u 50~100 pixels per column »timing being developed –copy NA60 readout electronics per pixel »on each pixel, amplifier, discriminator, buffer

Oct Problem #4 Mixed Analog/Digital  If we use discriminator and buffer on each pixel, possible digital noise corruption on analog signal –could use RHIC clock signal »no digital activity during first 20 ns after collision  If we use sample/hold on each pixel –no digital circuitry per pixel –digital circuitry at base of column

Oct Iowa State R&D  R&D project Electrical Engineering Profs/students at ISU –working on epitaxial layer, doping and foundry issues –laying out pixel electronics »on-pixel amplifier/sample-hold. Column ADC »on-pixel discriminator/pipeline from NA60  Goal is to have first design finished by Christmas –simulate –iterate –submit prototype in Spring 2002