1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.4: Estimation of a population mean   is not known  This section.

Slides:



Advertisements
Similar presentations
Sections 7-1 and 7-2 Review and Preview and Estimating a Population Proportion.
Advertisements

Hypothesis: It is an assumption of population parameter ( mean, proportion, variance) There are two types of hypothesis : 1) Simple hypothesis :A statistical.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.5 Estimation of a Population Variance This section presents methods.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.3 Estimating a Population mean µ (σ known) Objective Find the confidence.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Section 7-3 Estimating a Population Mean:  Known Created by.
Estimates and sample sizes Chapter 6 Prof. Felix Apfaltrer Office:N763 Phone: Office hours: Tue, Thu 10am-11:30.
7-3 Estimating a Population Mean
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.2 Estimating a Population Proportion Objective Find the confidence.
Confidence Interval A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Chapter 7 Confidence Intervals and Sample Sizes
Section 7-4 Estimating a Population Mean: σ Not Known.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Section 8-5 Testing a Claim About a Mean:  Not Known.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 7 Estimates and Sample Sizes 7-1 Review and Preview 7-2 Estimating.
6 Chapter Confidence Intervals © 2012 Pearson Education, Inc.
1 Chapter 6. Section 6-1 and 6-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Estimating a Population Variance
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Estimating a Population Mean: σ Known 7-3, pg 355.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.4 Estimation of a Population Mean  is unknown  This section presents.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 8-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. 7-1 Review and Preview 7-2 Estimating a Population Proportion 7-3 Estimating a Population.
1 Chapter 6 Estimates and Sample Sizes 6-1 Estimating a Population Mean: Large Samples / σ Known 6-2 Estimating a Population Mean: Small Samples / σ Unknown.
Sections 7-1 and 7-2 Review and Preview and Estimating a Population Proportion.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides 11 th Edition Chapter 7.
Section 8-5 Testing a Claim about a Mean: σ Not Known.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7-5 Estimating a Population Variance.
Estimating a Population Mean
Section 6-3 Estimating a Population Mean: σ Known.
1 Chapter 6. Section 6-1 and 6-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Estimates and Sample Sizes Chapter 6 M A R I O F. T R I O L A Copyright © 1998,
Estimating a Population Mean:  Known
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7-4 Estimating a Population Mean:  Not Known.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Example: In a recent poll, 70% of 1501 randomly selected adults said they believed.
Chapters 6 & 7 Overview Created by Erin Hodgess, Houston, Texas.
1 Chapter 6. Section 6-3. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION E LEMENTARY.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.4 Estimation of a Population Mean  is unknown  This section presents.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
Point Estimates point estimate A point estimate is a single number determined from a sample that is used to estimate the corresponding population parameter.
Use of Chebyshev’s Theorem to Determine Confidence Intervals
Chapter 7 Estimates and Sample Sizes 7-1 Overview 7-2 Estimating a Population Proportion 7-3 Estimating a Population Mean: σ Known 7-4 Estimating a Population.
Estimating a Population Variance
Lecture Slides Elementary Statistics Twelfth Edition
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Section 6.2 Confidence Intervals for the Mean (  Unknown)
Section 6.2 Confidence Intervals for the Mean (Small Samples) Larson/Farber 4th ed.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 8.3.
ESTIMATION OF THE MEAN. 2 INTRO :: ESTIMATION Definition The assignment of plausible value(s) to a population parameter based on a value of a sample statistic.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Example: In a recent poll, 70% of 1501 randomly selected adults said they believed.
Section 7-5 Estimating a Population Variance. MAIN OBJECTIIVES 1.Given sample values, estimate the population standard deviation σ or the population variance.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Confidence Intervals. Point Estimate u A specific numerical value estimate of a parameter. u The best point estimate for the population mean is the sample.
Section 6.2 Confidence Intervals for the Mean (Small Samples) © 2012 Pearson Education, Inc. All rights reserved. 1 of 83.
Lecture Slides Elementary Statistics Twelfth Edition
Estimating a Population Mean:  Not Known
Copyright © 2004 Pearson Education, Inc.
Chapter 6 Confidence Intervals.
Estimates and Sample Sizes Sections 6-2 & 6-4
Elementary Statistics
Elementary Statistics
Sections 6-4 & 7-5 Estimation and Inferences Variation
M A R I O F. T R I O L A Estimating Population Proportions Section 6-5
Lecture Slides Elementary Statistics Tenth Edition
Chapter 6 Confidence Intervals.
Elementary Statistics: Picturing The World
Estimating a Population Mean:  Not Known
Estimating a Population Variance
Estimates and Sample Sizes Civil and Environmental Engineering Dept.
Presentation transcript:

1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.4: Estimation of a population mean   is not known  This section presents methods for estimating a population mean when the population standard deviation  is not known.

2 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. The sample mean x is still the best point estimate of the population mean  . Sample Mean _

3 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Construction of a confidence intervals for   is not known  With σ unknown, we use the Student t distribution instead of normal distribution. It involves a new feature: number of degrees of freedom

4 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. degrees of freedom = n – 1 in this section. Definition The number of degrees of freedom for a collection of sample data is the number of sample values that can vary after certain restrictions have been imposed on all data values. The degree of freedom is often abbreviated df.

5 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Margin of Error E for Estimate of  (With  σ Not Known) Formula 7-6 where t  2 has n – 1 degrees of freedom. n s E = t   2 Table A-3 lists values for t α/2 t  /2 = critical t value separating an area of  /2 in the right tail of the t distribution

6 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. where E = t  /2 n s x – E < µ < x + E t  /2 found in Table A-3 Confidence Interval for the Estimate of μ (With σ Not Known) df = n – 1

7 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Important Properties of the Student t Distribution 1.The Student t distribution is different for different sample sizes (see the following slide, for the cases n = 3 and n = 12). 2.The Student t distribution has the same general symmetric bell shape as the standard normal distribution but it reflects the greater variability (with wider distributions) than that the standard normal distribution does. 3.The Student t distribution has a mean of t = 0 (just as the standard normal distribution has a mean of z = 0). 4.The standard deviation of the Student t distribution varies with the sample size and is greater than 1 (unlike the standard normal distribution, which has a  = 1). 5.As the sample size n gets larger, the Student t distribution gets closer to the normal distribution.

8 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Student t Distributions for n = 3 and n = 12 Figure 7-5

9 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Choosing the Appropriate Distribution Use the normal (z) distribution  known and normally distributed population or  known and n > 30 Use t distribution  not known and normally distributed population or  not known and n > 30 Methods of Chapter 7 do not apply Population is not normally distributed and n ≤ 30

10 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Press STAT and select TESTS Scroll down to TInterval press ENTER choose Data or Stats. For Stats: Type in x: (sample mean)  S x : (sample st. deviation) n: (number of trials) C-Level: (confidence level) Press on Calculate Read the confidence interval (…..,..…) Confidence Intervals by TI-83/84 _

11 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Press STAT and select TESTS Scroll down to TInterval press ENTER choose Data or Stats. For Data: Type in List: L 1 (or L 2 or L 3 ) (specify the list containing your data)  Freq: 1 (leave it) C-Level: (confidence level) Press on Calculate Read the confidence interval (…..,..…) Confidence Intervals by TI-83/84

12 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Point estimate of µ : x = (upper confidence limit) + (lower confidence limit) 2 Margin of Error: E = (upper confidence limit) – (lower confidence limit) 2 Finding the Point Estimate and E from a Confidence Interval

13 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7-5 Estimating a Population Variance This section covers the estimation of a population variance  2 and standard deviation 

14 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Estimator of  2 The sample variance s 2 is the best point estimate of the population variance  2.

15 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Estimator of  The sample standard deviation s is a commonly used point estimate of .

16 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Construction of confidence intervals for  2 We use the chi-square distribution, denoted by Greek character  2 (pronounced chi-square).

17 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Properties of the Chi-Square Distribution 1. The chi-square distribution is not symmetric, unlike the normal and Student t distributions. Chi-Square Distribution Chi-Square Distribution for df = 10 and df = 20 degrees of freedom = n – 1

18 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 2. The values of chi-square can be zero or positive, but they cannot be negative. 3.The chi-square distribution is different for each number of degrees of freedom, which is df = n – 1. In Table A-4, each critical value of  2 corresponds to an area given in the top row of the table, and that area represents the cumulative area located to the right of the critical value. Properties of the Chi-Square Distribution

19 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Example A sample of ten voltage levels is obtained. Construction of a confidence interval for the population standard deviation  requires the left and right critical values of  2 corresponding to a confidence level of 95% and a sample size of n = 10. Find the critical value of  2 separating an area of in the left tail, and find the critical value of  2 separating an area of in the right tail.

20 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Example Critical Values of the Chi-Square Distribution

21 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Confidence Interval for Estimating a Population Variance

22 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Confidence Interval for Estimating a Population Standard Deviation

23 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Requirement: The population must have normally distributed values (even if the sample is large) This requirement is very strict

24 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 1.When using the original set of data, round the confidence interval limits to one more decimal place than used in original set of data. 2.When the original set of data is unknown and only the summary statistics (n, x, s) are used, round the confidence interval limits to the same number of decimal places used for the sample standard deviation. Round-Off Rule for Confidence Intervals Used to Estimate  or  2

25 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Determining Sample Sizes The procedure for finding the sample size necessary to estimate  2 is based on Table 7-2. You just read the required sample size from an appropriate line of the table.

26 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Determining Sample Sizes

27 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Example: We want to estimate the standard deviation . We want to be 95% confident that our estimate is within 20% of the true value of . How large should the sample be? Assume that the population is normally distributed. From Table 7-2, we can see that 95% confidence and an error of 20% for  correspond to a sample of size 48. We should obtain a sample of 48 values.