DEA - Università degli Studi di Brescia Aerosol long term simulation using TCAM model C. Carnevale, G. Finzi, E. Pisoni, M. Volta Department for Electronics.

Slides:



Advertisements
Similar presentations
DEA - Università degli Studi di Brescia TCAM model configuration for POMI simulations C. Carnevale, G. Finzi, E. Pisoni, M. Volta Dipartimento di Elettronica.
Advertisements

R. L. Buckley and C. H. Hunter Atmospheric Technologies Group Savannah River National Laboratory Recent Improvements to an Advanced Atmospheric Transport.
ESF- MedCLIVAR Workshop Climate Change Modeling for the Mediterranean region, ICTP, Trieste, Italy, Oct 2008 Regional air quality decadal simulations.
PREV AIR : An operational system for air quality monitoring and forecasting presented by Laurence Rouïl.
POMI Po Valley Model Intercomparison Exercise CAMx model overview In cooperation with AMA - MI.
Integrated modelling and monitoring for use in forecasting Jørgen Brandt and Finn Palmgren National Environmental Research Institute Department of Atmospheric.
Institute for Environment and Sustainability1 POMI Kick-off Meeting 07/03/2008.
Urban Modelling 1 03/2003 © Crown copyright Urban Scale NWP with the Met Office's Unified Model Peter Clark Mesoscale Modelling Group Met Office Joint.
Paolo Tuccella, Gabriele Curci, Suzanne Crumeyrolle, Guido Visconti
PREV AIR : An operational system for large scale air quality monitoring and forecasting
CHIMERE air quality forecasts : results during Pays de la Loire summer 2004 experiment and end-user point of view ! Arnaud REBOURS - AIR PAYS DE LA LOIRE.
EC Regional Air Quality Deterministic Prediction System (RAQDPS) Mike Moran Air Quality Research Division Environment Canada, Toronto, Ontario Mtg on AQ.
National Institute of Environmental Research Atmospheric Physics Division National Institute of Environmental Research Fax: ,
Use of Lidar Backscatter to Determine the PBL Heights in New York City, NY Jia-Yeong Ku, Chris Hogrefe, Gopal Sistla New York State Department of Environmental.
Applying the DELTA-FAIRMODE tool to support AQD: the validation of the TCAM Chemical Transport Model C. Carnevale, G. Finzi, A. Pederzoli, P. Thunis, E.
The MINNI Project Italian Agency for New Technologies Energy and the Environment Long Range Transboundary Air Pollution Convention TFIAM Meeting, Amiens,
A numerical simulation of urban and regional meteorology and assessment of its impact on pollution transport A. Starchenko Tomsk State University.
1 AirWare : AirWare : C OMPREHENSIVE A IR QUALITY M ODEL WITH E X TENSIONS VERSION 4.30, PBM DDr. Kurt Fedra Environmental Software & Services GmbH A-2352.
1 st Chimere workshop March 2005Stortini,Bonafe,Deserti,Minguzzi,Jongen Operational implementation of NINFA in Northern Italy ARPA Servizio IdroMeteorologico.
CMAQ and REMSAD- Model Performance and Ongoing Improvements Brian Timin, Carey Jang, Pat Dolwick, Norm Possiel, Tom Braverman USEPA/OAQPS December 3, 2002.
PREV ’AIR : An operational system for large scale air quality monitoring and forecasting over Europe
Title EMEP Unified model Importance of observations for model evaluation Svetlana Tsyro MSC-W / EMEP TFMM workshop, Lillestrøm, 19 October 2010.
DEA - Università degli Studi di Brescia Multi-objective optimization to select effective PM10 control policies in Northern Italy C. Carnevale, E. Pisoni,
G. Pirovano – CESIRICERCA, Italy Comparison and validation of long term simulation of PM10 over 7 European cities in the frame of Citydelta project Bedogni.
1 Non-linear effects in modelling PM 10 and PM 2,5 contributions from anthropogenic sources Clemens Mensink, Felix Deutsch, Jean Vankerkom and Liliane.
Evaluation of Two Numerical Algorithms in Simulating Particle Condensational Growth and Gas/Particle Mass Transfer Yang Zhang and Christian Seigneur Atmospheric.
Atmospheric modelling activities inside the Danish AMAP program Jesper H. Christensen NERI-ATMI, Frederiksborgvej Roskilde.
Evaluation of the AIRPACT2 modeling system for the Pacific Northwest Abdullah Mahmud MS Student, CEE Washington State University.
Session 9, Unit 17 UAM and CAMx. UAM and CAMx UAM - Urban Airshed Model Currently available versions:  UAM-V 1.24  UAM-V 1.30  Available from Systems.
CMAQ (Community Multiscale Air Quality) pollutant Concentration change horizontal advection vertical advection horizontal dispersion vertical diffusion.
Template CAMx Ancillary Input Development Chris Emery ENVIRON International Corporation, Novato CA November 14, 2012.
The Sensitivity of Aerosol Sulfate to Changes in Nitrogen Oxides and Volatile Organic Compounds Ariel F. Stein Department of Meteorology The Pennsylvania.
Ozone plume formation and impact of environmental measures in the ESCOMPTE area I. Coll, F. Lasry, S. Fayet, M. Samaali and J.L. Ponche.
Modelling of Acid deposition in South Asia Magnuz Engardt Swedish Meteorological and Hydrological Institute (SMHI) Introduction to Acid deposition.
GEM-MACH Global The Canadian Global Air Quality Modeling/Forecasting System Dr. Sunling Gong Science and Technology Branch January 16-17, 2012.
EVALUATION AND IMPROVEMENT OF GAS/PARTICLE MASS TRANSFER TREATMENTS FOR 3-D AEROSOL SIMULATION AND FORECAST Xiaoming Hu and Yang Zhang North Carolina State.
Air Quality Forecasting Bas Mijling Ronald van der A AMFIC Annual Meeting ● Beijing ● October 2008.
1 Recent Advances in the Modeling of Airborne Substances George Pouliot Shan He Tom Pierce.
Regional Modeling Update September 12, 2002 Air Resources Board California Environmental Protection Agency Ajith Kaduwela, Ph.D Luis F. Woodhouse, Ph.D.
Mihaela Mircea 1, Massimo D'Isidoro 1, Alberto Maurizi 1, Maria Gabriella Villani 1, Andrea Buzzi 1, Sandro Fuzzi 1, Francesco Tampieri 1 Gabriele Zanini.
GEM/AQ Simulations on Intercontinental Transports Science and Technology Branch Environment Canada.
PM Model Performance & Grid Resolution Kirk Baker Midwest Regional Planning Organization November 2003.
Air Quality Forecasting in China using a regional model Bas Mijling Ronald van der A Henk Eskes Hennie Kelder.
Operational Evaluation and Comparison of CMAQ and REMSAD- An Annual Simulation Brian Timin, Carey Jang, Pat Dolwick, Norm Possiel, Tom Braverman USEPA/OAQPS.
Application of Models-3/CMAQ to Phoenix Airshed Sang-Mi Lee and Harindra J. S. Fernando Environmental Fluid Dynamics Program Arizona State University.
Introduction to Modeling – Part II
An Exploration of Model Concentration Differences Between CMAQ and CAMx Brian Timin, Karen Wesson, Pat Dolwick, Norm Possiel, Sharon Phillips EPA/OAQPS.
THE MODELS-3 COMMUNITY MULTI- SCALE AIR QUALITY (CMAQ) MODEL: 2002 RELEASE – NEW FEATURES Jonathan Pleim, Francis Binkowski, Robin Dennis, Brian Eder,
Types of Models Marti Blad Northern Arizona University College of Engineering & Technology.
Georgia Institute of Technology SAMI Aerosol Modeling: Performance Evaluation & Future Year Simulations Talat Odman Georgia Institute of Technology SAMI.
Georgia Institute of Technology SUPPORTING INTEX THROUGH INTEGRATED ANALYSIS OF SATELLITE AND SUB-ORBITAL MEASUREMENTS WITH GLOBAL AND REGIONAL 3-D MODELS:
PAGE 1 An adaptation of SMOKE for Europe Johannes Bieser Armin Aulinger, Volker Matthias, Markus Quante GKSS Research Center Geesthacht, Germany.
IUAPPA Sao Paulo1 Air Quality Modeling at Santiago, Chile: Impact of Transportation Sources Héctor Jorquera Chemical and Bioprocess Engineering Catholic.
Intro to Modeling – Terms & concepts Marti Blad, Ph.D., P.E. ITEP
MRPO Technical Approach “Nearer” Term Overview For: Emissions Modeling Meteorological Modeling Photochemical Modeling & Domain Model Performance Evaluation.
Sensitivity of PM 2.5 Species to Emissions in the Southeast Sun-Kyoung Park and Armistead G. Russell Georgia Institute of Technology Sensitivity of PM.
Aerosol simulation with coupled meteorology-radiation- chemistry model WRF/Chem over Europe.
Institute for Environment and Sustainability1 Date & Time 09: :30Status review and improvements  BaseCase (1) problem review and actions taken (20’)
The application of Models-3 in national policy Samantha Baker Air and Environment Quality Division, Defra.
Albert Oliver, Raúl Arasa, Agustí Pérez-Foguet, Mª Ángeles González HARMO17 Budapest May 2016 Simulating large emitters using CMAQ and a local scale finite.
Xuguo ZHANG, Jimmy FUNG, Alexis LAU and Wayne Wei HUANG
Simulation of Ozone and PM in Southern Taiwan
Introduction to Modeling – Part II
M. Samaali, M. Sassi, V. Bouchet
Steve Griffiths, Rob Lennard and Paul Sutton* (*RWE npower)
Model overview.
EURODELTA III RCG-Model
ENEA, National Agency for New Technologies, Energy and Sustainable
PM modelling assessment in Northern Italy
C. Carnevale1, G. Finzi1, E. Pisoni1, P. Thunis2, M. Volta1
Presentation transcript:

DEA - Università degli Studi di Brescia Aerosol long term simulation using TCAM model C. Carnevale, G. Finzi, E. Pisoni, M. Volta Department for Electronics and Automation University of Brescia

DEA - Università degli Studi di Brescia Index 1.The GAMES modelling system 2.The Transport Chemical Aerosol Model 3.The CityDelta III base case simulation 4.Chemical composition of simulated PM10 5.Conclusion

DEA - Università degli Studi di Brescia The Gas Aerosol Modelling Evaluation System (GAMES) Land use Topography MM5 output Meterological Pre-processor TCAM Continental model output Initial and Boundary condition Pre-processors Boundary and Initial condition 3D concentration fields Emission Model Emission inventories Emission Fields 3D wind and temperature fields Turbolence and Boundary Layer parameters VOC speciation Profiles Temporal Profiles System Evaluation Tool

DEA - Università degli Studi di Brescia TCAM (Transport and Chemical Aerosol Model): Transport and Depostion Module Eulerian 3D model Terrain-following co-ordinate system Horizontal Transport Module: chapeau function + forester filter Vertical Transport Module: Crank-Nicholson hybrid solver based on the vertical diffusivity coefficient Deposition Module –Dry deposition: resistance-based approach –Wet deposition: scavenging approach for both gas and aerosol species

DEA - Università degli Studi di Brescia TCAM (Transport and Chemical Aerosol Model): Gas chemical module Chemical Mechanism –CBIV 90 –SAPRC 90/97 –COCOH 97 Numerical Solver –QSSA (explicit) –IEH (hybrid) Species: 95 Reactions: 187 Fast-Species (12): LSODE (implicit) Slow-Species: Adams-Bashforth (explicit)

DEA - Università degli Studi di Brescia Chemical Species: 21 –12 inorganics –9 organics Size Classes: 10 (da 0.01 m a 50 m) –Fixed moving approach Involved Phenomena: –Condensation/Evaporation –Nucleation –SO 2 aqueus chemistry TCAM (Transport and Chemical Aerosol Model): Aerosol module Shell Core

DEA - Università degli Studi di Brescia CDIII base case simulation: computational domain 300x300 km 2 Horizontal resolution: 5x5 km 2 Vertical resolution: 11 varying thickness levels –1st level: 20m Simulation year: 2004

DEA - Università degli Studi di Brescia CDIII base case simulation: Gas emission fields VOC NOx NH3 SOx

DEA - Università degli Studi di Brescia CDIII base case simulation: PM emission fields PM10PM2.5

DEA - Università degli Studi di Brescia CDIII base case simulation: Monitoring station Station Yearly Mean Winter Mean Summer Mean Osio Vimercate Rezzato Juvara Limito Magenta Verziere

DEA - Università degli Studi di Brescia CDIII base case simulation: Yearly Performance Mean 95th Perc CorrelationNBIAS

DEA - Università degli Studi di Brescia CDIII base case simulation: Winter Performances Mean 95th Perc CorrelationNBIAS

DEA - Università degli Studi di Brescia CDIII base case simulation: Summer Performances Mean 95th Perc CorrelationNBIAS

DEA - Università degli Studi di Brescia CDIII base case simulation: PM10 concentration maps Year Winter Summer

DEA - Università degli Studi di Brescia CDIII base case simulation: PM10 yearly chemical composition

DEA - Università degli Studi di Brescia CDIII base case simulation: mainly inorganic fraction maps NH4+ NO3-

DEA - Università degli Studi di Brescia Conclusion Quite good performance in terms of mean values both in winter and summer; Correlation lower than 0.65 in all the station –CAUSES? TCAM reproduces reasonably the chemical composition of PM10 –overestimation of ammonium fraction

DEA - Università degli Studi di Brescia Emission pre-processor (UNIBS) POllutant Emission Model for CDIII (POEM-CDIII) provides hourly base case and scenario emission fields for: CAMx TCAM JRC data Time modulation Chemical characterization Chemical/Size characterization Gas: CBIV99 PM: 2 size bins, 8 chemical species Gas: COCOH97 PM: 6 size bins, 8 chemical species CESI AMA

DEA - Università degli Studi di Brescia Boundary pre-processor (CESI) Boundy Module provides hourly base case and scenario boundary conditions Chimere Gas: 23 species PM: 4 size bins 11 chemical species BOUNDY TCAM Gas: 62 species PM: 10 size bins 21 chemical species PM experimental size profiles

DEA - Università degli Studi di Brescia CDIII base case simulation: PM2.5/PM10 concentration map PM2.5/PM10 Concentration PM2.5/PM10 Emisison