Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.

Slides:



Advertisements
Similar presentations
Mechanical resonators towards quantum limit: NEMS group together with NANO, THEORY, KVANTTI Mika Sillanpää assoc. prof., team leader Juha-Matti Pirkkalainen.
Advertisements

Outlines Rabi Oscillations Properties of Rydberg atoms Van Der Waals Force and Rydberg Blockade The implementation of a CNOT gate Preparation of Engtanglement.
Cavity cooling of a single atom James Millen 21/01/09.
Detecting atoms in a lattice with two photon raman transitions Inés de Vega, Diego Porras, Ignacio Cirac Max Planck Institute of Quantum Optics Garching.
Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M.
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Coulomb Crystals and Ground State Cooling of Single Ca + Ions in a Penning Trap Danny Segal.
Emergent Majorana Fermion in Cavity QED Lattice
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Ultracold Quantum Gases Part 1: Bose-condensed Gases The experimentalist’s perspective Ultracold Quantum Gases Part 1: Bose-condensed Gases The experimentalist’s.
The Fit and the Pendulum Quantum Mechanics and New Clocks M. Crescimanno Department of Physics and Astronomy Youngstown State University & R. Walsworth,
Stimulated Raman Adiabatic Passage into continuum
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Outline The goal The Hamiltonian The superfast cooling concept Results Lessons learned (time allowing)
Quantum Computing with Trapped Ion Hyperfine Qubits.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Guillermina Ramirez San Juan
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Decoherence issues for atoms in cavities & near surfaces Peter Knight, Imperial College London work with P K Rekdal,Stefan Scheel, Almut Beige, Jiannis.
Theory of Intersubband Antipolaritons Mauro F
Strongly correlated phenomena in cavity QED Fernando G.S.L. Brandão 1,2 Michael J. Hartmann 1,2 Martin B. Plenio 1,2 1 Institute for Mathematical Sciences,
The Fit and the Pendulum Quantum Mechanics and New Clocks M. Crescimanno Department of Physics and Astronomy Youngstown State University & R. Walsworth,
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Outline The goal The Hamiltonian The superfast cooling concept Results Technical issues (time allowing)
Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Excited state spatial distributions in a cold strontium gas Graham Lochead.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Squeezing generation and revivals in a cavity-ion system Nicim Zagury Instituto de Física, Universidade Federal Rio de Janeiro, Brazil colaboradores: R.
The Theory of Effective Hamiltonians for Detuned Systems
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Bose-Einstein Condensation (a tutorial) Melinda Kellogg Wyatt Technology Corporation Santa Barbara, CA June 8, 2010.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Pablo Barberis Blostein y Marc Bienert
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
For long wavelength, compared to the size of the atom The term containing A 2 in the dipole approximation does not involve atomic operators, consequently.
Fast and Robust Laser Cooling of Trapped Systems Javier Cerrillo-Moreno, Alex Retzker, Martin B. Plenio Obergurgl, 7 th June 2010.
Instability of optical speckle patterns in cold atomic gases ? S.E. Skipetrov CNRS/Grenoble (Part of this.
Spin Wave Model to study multilayered magnetic materials Sarah McIntyre.
Doppler Effect Shift in frequency (high to low) due to the compression of light (or sound) waves in front of a moving object and the expansion of the light.
Rydberg atoms part 1 Tobias Thiele.
Shanxi University Atomic Physics Chapter 7 The interaction of atoms with radiation Atomic Physics.
Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes.
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
Ultracold Quantum Gases Part 1 Making and Probing Bose-condensed Gases Ultracold Quantum Gases Part 1 Making and Probing Bose-condensed Gases TexPoint.
Single-photon single-ion interaction in front of a parabolic mirror Magdalena Stobińska, Robert Alicki, Gerd Leuchs Erlangen-Nürnberg University Max Planck.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Tunable excitons in gated graphene systems
Implementation of All-Optical Toffoli gate in Λ- systems
Preparing antihydrogen at rest for the free fall in
Making cold molecules from cold atoms
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
Norm Moulton LPS 15 October, 1999
Cold Atom project 12/02/2019.
Presentation transcript:

Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival June 2009

Cold ion crystals Boulder, USA: Hg + (mercury) Aarhus, Denmark: 40 Ca + (Blue) and 24 Mg + (Red) Innsbruck, Austria: 40 Ca + Oxford, England: 40 Ca +

Hamiltonian: Laser – Ion Interactions mode frequencies Laser frequency Rabi frequency

Laser – Ion Interactions Detuning of laser with respect to atomic transition Lamb-Dicke parameter relates size of ground state to wave length of light In ion trap experiments, usually Carrier resonance:Red sideband:Blue sideband: Heating: Cooling:

Doppler cooling Einstein‘s relation:

Dark state cooling VSCPT (Velocity-Selective Coherent Population Trapping) The recoil limit: Aspect etal, PRL, 1988 Idea: Cool to the ground state, a stationary state that is decoupled from laser light The staedy state: Delocalized state

EIT Cooling Morigi,Eschner and Keitel PRL,85 (2004) Morigi, PRA,67 (2003) Broad resonance: Narrow resonance:

Motivation Using two cooling schemes which have the same common internal dark state we could possibly cool to zero temperature EIT and Side Band

Ω Ω Ωc, η ν Stark Shift gate Stark Shift Cooling

Ω Ω Ωc, η Ω, -η Ω, η Ωc, ηc Robust Cooling - concept

Ω, -η Ω, η Ωc, ηc Steady state solution: EIT and SS: Robust Cooling – steady state

Robust cooling – Intuition H EIT H int = H EIT + H SS = 0 + aH EIT = 0 H EIT H SS ≠ a

Robust cooling – Intuition EIT

Parameter conditions The steady state is a motional dark state

Unitary correction Dispersive coupling Start Shift cycle

Robust cooling - Highlights Unitary correction

Robustness

Conclusions The steady state is a pure state Null population in leading order High cooling rate Robust to experimental fluctuations