Reconstruction from Two Calibrated Views Two-View Geometry

Slides:



Advertisements
Similar presentations
Epipolar Geometry.
Advertisements

Lecture 11: Two-view geometry
Geometry 2: A taste of projective geometry Introduction to Computer Vision Ronen Basri Weizmann Institute of Science.
MASKS © 2004 Invitation to 3D vision Lecture 7 Step-by-Step Model Buidling.
3D Reconstruction – Factorization Method Seong-Wook Joo KG-VISA 3/10/2004.
Two-View Geometry CS Sastry and Yang
Two-view geometry.
Lecture 8: Stereo.
Camera calibration and epipolar geometry
Structure from motion.
Image Correspondence and Depth Recovery Gene Wang 4/26/2011.
MASKS © 2004 Invitation to 3D vision Lecture 8 Segmentation of Dynamical Scenes.
Computer Vision : CISC 4/689
Stereo and Epipolar geometry
Geometry of Images Pinhole camera, projection A taste of projective geometry Two view geometry:  Homography  Epipolar geometry, the essential matrix.
Epipolar geometry. (i)Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point.
Structure from motion. Multiple-view geometry questions Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding.
Uncalibrated Geometry & Stratification Sastry and Yang
Multiple-view Reconstruction from Points and Lines
3D reconstruction of cameras and structure x i = PX i x’ i = P’X i.
CAU Kiel DAGM 2001-Tutorial on Visual-Geometric 3-D Scene Reconstruction 1 The plan for today Leftovers and from last time Camera matrix Part A) Notation,
Previously Two view geometry: epipolar geometry Stereo vision: 3D reconstruction epipolar lines Baseline O O’ epipolar plane.
Lecture 20: Two-view geometry CS6670: Computer Vision Noah Snavely.
Projected image of a cube. Classical Calibration.
May 2004Stereo1 Introduction to Computer Vision CS / ECE 181B Tuesday, May 11, 2004  Multiple view geometry and stereo  Handout #6 available (check with.
Lec 21: Fundamental Matrix
Global Alignment and Structure from Motion Computer Vision CSE455, Winter 2008 Noah Snavely.
Structure Computation. How to compute the position of a point in 3- space given its image in two views and the camera matrices of those two views Use.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm Lecture #15.
3-D Scene u u’u’ Study the mathematical relations between corresponding image points. “Corresponding” means originated from the same 3D point. Objective.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
CSE 6367 Computer Vision Stereo Reconstruction Camera Coordinate Transformations “Everything should be made as simple as possible, but not simpler.” Albert.
Multi-view geometry. Multi-view geometry problems Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates.
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2013.
Automatic Camera Calibration
Lecture 11 Stereo Reconstruction I Lecture 11 Stereo Reconstruction I Mata kuliah: T Computer Vision Tahun: 2010.
Epipolar Geometry and Stereo Vision Computer Vision ECE 5554 Virginia Tech Devi Parikh 10/15/13 These slides have been borrowed from Derek Hoiem and Kristen.
Multi-view geometry.
Epipolar geometry The fundamental matrix and the tensor
1 Preview At least two views are required to access the depth of a scene point and in turn to reconstruct scene structure Multiple views can be obtained.
Lecture 04 22/11/2011 Shai Avidan הבהרה : החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Metrology 1.Perspective distortion. 2.Depth is lost.
Multiview Geometry and Stereopsis. Inputs: two images of a scene (taken from 2 viewpoints). Output: Depth map. Inputs: multiple images of a scene. Output:
Stereo Course web page: vision.cis.udel.edu/~cv April 11, 2003  Lecture 21.
Single-view geometry Odilon Redon, Cyclops, 1914.
Raquel A. Romano 1 Scientific Computing Seminar May 12, 2004 Projective Geometry for Computer Vision Projective Geometry for Computer Vision Raquel A.
Two-view geometry. Epipolar Plane – plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections of the.
Feature Matching. Feature Space Outlier Rejection.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
Computer vision: models, learning and inference M Ahad Multiple Cameras
MASKS © 2004 Invitation to 3D vision Uncalibrated Camera Chapter 6 Reconstruction from Two Uncalibrated Views Modified by L A Rønningen Oct 2008.
Geometry Reconstruction March 22, Fundamental Matrix An important problem: Determine the epipolar geometry. That is, the correspondence between.
Uncalibrated reconstruction Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration.
Stereo March 8, 2007 Suggested Reading: Horn Chapter 13.
EECS 274 Computer Vision Projective Structure from Motion.
Lec 26: Fundamental Matrix CS4670 / 5670: Computer Vision Kavita Bala.
Multi-view geometry. Multi-view geometry problems Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates.
CS682, Jana Kosecka Rigid Body Motion and Image Formation Jana Kosecka
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry
René Vidal and Xiaodong Fan Center for Imaging Science
Epipolar geometry.
Structure from motion Input: Output: (Tomasi and Kanade)
Computer Graphics Recitation 12.
Uncalibrated Geometry & Stratification
George Mason University
Two-view geometry.
Two-view geometry.
Multi-view geometry.
Structure from motion Input: Output: (Tomasi and Kanade)
Presentation transcript:

Reconstruction from Two Calibrated Views Two-View Geometry

General Formulation Given two views of the scene recover the unknown camera displacement and 3D scene structure MASKS © 2004 Invitation to 3D vision

Pinhole Camera Model 3D points Image points Perspective Projection Rigid Body Motion Rigid Body Motion + Projective projection MASKS © 2004 Invitation to 3D vision

3D Structure and Motion Recovery Euclidean transformation measurements unknowns Find such Rotation and Translation and Depth that the reprojection error is minimized Two views ~ 200 points 6 unknowns – Motion 3 Rotation, 3 Translation - Structure 200x3 coordinates - (-) universal scale Difficult optimization problem MASKS © 2004 Invitation to 3D vision

MASKS © 2004 Invitation to 3D vision

Epipolar Geometry Epipolar constraint Essential matrix MASKS © 2004 Invitation to 3D vision

Epipolar Geometry Epipolar lines l1, l2 Coimages of epipolar lines Epipoles Image correspondences l1 l2 MASKS © 2004 Invitation to 3D vision

Characterization of the Essential Matrix Special 3x3 matrix Theorem 1a (Essential Matrix Characterization) A non-zero matrix is an essential matrix iff its SVD: satisfies: with and and MASKS © 2004 Invitation to 3D vision

Estimating the Essential Matrix Estimate Essential matrix Decompose Essential matrix into Given n pairs of image correspondences: Find such Rotation and Translation that the epipolar error is minimized Space of all Essential Matrices is 5 dimensional 3 Degrees of Freedom – Rotation 2 Degrees of Freedom – Translation (up to scale !) MASKS © 2004 Invitation to 3D vision

Estimating Essential Matrix Denote Rewrite Collect constraints from all points MASKS © 2004 Invitation to 3D vision