Prof R T KennedyPOWER ELECTRONICS 21 EET 423 POWER ELECTRONICS -2.

Slides:



Advertisements
Similar presentations
Basic Electronics Part 2: Power Supply Design
Advertisements

SMPS - Switch Mode Power Supply
M2-3 Buck Converter Objective is to answer the following questions: 1.How does a buck converter operate?
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
Ch6 DC-DC Converters 6-1 Linear voltage regulators Fig. 6.1 Adjustingbasecurrent, => linear DC-DC converter orlinear regulator Thetransistor operates in.
EE462L, Spring 2014 DC−DC Boost Converter
Instructor: Po-Yu Kuo (郭柏佑) 國立雲林科技大學 電子工程系
7. Introduction to DC/DC Converters
Introduction to DC-DC Conversion – Cont.
CIRCUITS, DEVICES, AND APPLICATIONS Eng.Mohammed Alsumady
Chapter 20 Quasi-Resonant Converters
ECE 442 Power Electronics1 NEWMAR 115 – 12 – 20AU Full-Wave Rectifier with Choke-Input Filter.
9/29/2004EE 42 fall 2004 lecture 131 Lecture #13 Power supplies, dependent sources, summary of ideal components Reading: Malvino chapter 3, Next:
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Reduction of power converter size through increase of switching frequency Increasing.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
ECE 442 Power Electronics1 Step Up Converter Close the switch to store energy in the inductor L Open the switch to transfer the energy stored in L to the.
Switching-Mode Regulators
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Series resonant converter.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Power Electronics Lecture-10 D.C to D.C Converters (Choppers)
升壓式轉換器 Boost Converter Instructor: Po-Yu Kuo ( 郭柏佑 ) 國立雲林科技大學 電子工程系.
Copyright by UNIT III DC Choppers 4/17/2017 Copyright by
Chapter 20 Quasi-Resonant Converters
Waveforms of the half-wave ZCS quasi-resonant switch cell
DC-DC Switch-Mode Converters
Instrumentation & Power Electronics
Buck Converter + V in - + V OUT - Assumptions for First Order Analysis: All components are ideal, including voltage source Output ripple voltage is negligible.
© 2012 Pearson Education. Upper Saddle River, NJ, All rights reserved. Electronic Devices, 9th edition Thomas L. Floyd Lecture 9: Power Supplies.
Power Electronics Notes 07A Introduction to DC/DC Converters
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
CHAPTER 18 Power Supplies. Objectives Describe and Analyze: Power Supply Systems Regulation Buck & Boost Regulators Flyback Regulators Off-Line Power.
DC−DC Buck Converter 1. DC-DC switch mode converters 2.
1 SEA_uniovi_CC1_00 Lección 4 Teoría básica de los convertidores CC/CC (I) (convertidores con un único transistor) Diseño de Sistemas Electrónicos de Potencia.
Lecture # 12&13 SWITCHING-MODE POWER SUPPLIES
Power Management for Embedded Systems. Power requirement for Embedded Micro Systems Multiple supply voltages Small size in all components, L R C etc High.
Prof R T KennedyPOWER ELECTRONICS 21. Prof R T KennedyPOWER ELECTRONICS 22 Class D audio amplifiers switching - PWM amplifiers -V cc.
Chapter 3 DC to DC Converters
DC−DC Buck Converter.
Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL.
Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL.
EET426 Power Electronics II
SWITCH-MODE POWER SUPPLIES AND SYSTEMS Silesian University of Technology Faculty of Automatic Control, Electronics and Computer Sciences Ryszard Siurek.
Linear Power Supplies, Switched Mode Power Supply
Introduction to DC-DC Conversion – Cont.
Prof R T Kennedy1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 IDEAL TRANSFORMER MAGNETIC DEVICE ELECTRICAL ISOLATION FUNCTION: TRANSFER ENERGY SCALE.
EET 423 POWER ELECTRONICS -2
6/22/2016 “IN THE NAME OF ALLAH THE MOST MERCIFUL AND THE MOST BENEFICIAL”
KAIST Power Electronics Lab, Dept. of EE., KAIST LG Semicon Hall (N24) 4102, 373-1, Guseong-dong, Yuseong-gu, Daejeon , Korea. TEL: ,
Power Electronics and Power Conversion, Assiut University 1 Photovoltaic Systems Ahmed G. Abo-Khalil.
بحث مشترك منشور فى مؤتمر دولى متخصص (منشور ، التحكيم علي البحث الكامل) B. M. Hasaneen and Adel A. Elbaset البحث التاسع 12 th International Middle East.
Switching-Mode Regulators
UNIT III DC Choppers.
EET 423 POWER ELECTRONICS -2
EET 423 POWER ELECTRONICS -2
EET426 Power Electronics II
DC-DC PWM Converters Lecture Note 5.
AC Inlet & AC Input Filter
DC Choppers 1 MH1032/brsr/A.Y /pe/DC CHOPPERS
Diode Rectifiers Chapter 5.
Power Converter’s Discontinuous Current Mode Operation
UNIT-7 CHOPPERS 12/1/2018.
Modeling of Dc-dc Boost Converter in Discontinuous Conduction Mode
Reading: Malvino chapter 3, Next: 4.10, 5.1, 5.8
AC voltage controller and cycloconverter
DC-DC Switch-Mode Converters
Dr. Unnikrishnan P.C. Professor, EEE
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 2
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 1
Chapter 5 Isolated Switch-Mode dc-to-dc Converters
Presentation transcript:

Prof R T KennedyPOWER ELECTRONICS 21 EET 423 POWER ELECTRONICS -2

Prof R T KennedyPOWER ELECTRONICS 22 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL I out a b V out

Prof R T KennedyPOWER ELECTRONICS 23 BUCK CONVERTER CIRCUIT VOLTAGES E i n V out V ds a b V L,a-b C R L V fwd

Prof R T KennedyPOWER ELECTRONICS 24 SUB INTERVAL EQUIVALENT CIRCUITS V ds = 0 a b V L,a-b = E in -V out E i n C R V out L MOSFET ON RECTIFIER OFF V fwd = -E in r ds,on

Prof R T KennedyPOWER ELECTRONICS 25 SUB INTERVAL EQUIVALENT CIRCUITS E i n C R a b V out V fwd = 0 V ds = E in MOSFET OFF RECTIFIER ON L a b V L,a-b = -V out a b

Prof R T KennedyPOWER ELECTRONICS 26 E in =V ds +(- V fwd ) V L + V out = -V fwd E in VLVL V out V fwd V ds 0 V gs

Prof R T KennedyPOWER ELECTRONICS 27 E in = V ds + (-V fwd ) E in VLVL V out V fwd V ds 0 V gs - V fwd

Prof R T KennedyPOWER ELECTRONICS 28 SMPS OPERATION QUANTIZED POWER/ENERGY TRANSFER VOLTAGE REGULATION

Prof R T KennedyPOWER ELECTRONICS 29 VOLTAGE TRANSFER FUNCTION ANALYSIS ENERGY BALANCE ENERGY BALANCE POWER BALANCE POWER BALANCE VOLT-TIME INTEGRAL VOLT-TIME INTEGRAL

Prof R T KennedyPOWER ELECTRONICS 210 ‘IDEAL’ BUCK ANALYSIS CCM ENERGY BALANCE APPROACH INDUCTOR CURRENT I L,M I L,m I L,av = I out 0 t

Prof R T KennedyPOWER ELECTRONICS 211 SUB INTERVAL -1: MOSFET ON E i n C R L OFF a b ON ENERGY STORED INPUT ENERGY LOAD ENERGY from source

Prof R T KennedyPOWER ELECTRONICS 212 SUB INTERVAL -2: RECTIFIER ON E i n C R L ON a b OFF ENERGY Discharge NO INPUT ENERGY LOAD ENERGY from inductor

Prof R T KennedyPOWER ELECTRONICS 213 D sw E in V out

Prof R T KennedyPOWER ELECTRONICS 214 ‘IDEAL’ BUCK ANALYSIS CCM POWER BALANCE APPROACH INPUT CURRENT = MOSFET CURRENT I in,av = I ds,av I L,m I L,M I out 0 D sw T D fwd T I in t

Prof R T KennedyPOWER ELECTRONICS 215 FARADAY’S VOLT-TIME INTEGRAL INDUCTOR VOLTAGE V1V1 t1t1 0 INDUCTOR CURRENT t2t2 V2V2 0 t t I m I M T current start and finish at same value EQUAL AREAS

Prof R T KennedyPOWER ELECTRONICS 216 ‘IDEAL’ BUCK ANALYSIS CCM VOLT-TIME INTEGRAL APPROACH INDUCTOR VOLTAGE D sw T D fwd T 0 ILIL VLVL 0 E in -V out -V out t area B area A

Prof R T KennedyPOWER ELECTRONICS 217 ‘IDEAL’ BUCK ANALYSIS CCM VOLT-TIME INTEGRAL APPROACH INDUCTOR VOLTAGE

Prof R T KennedyPOWER ELECTRONICS 218 ‘ideal’ BUCK CONVERTER CCM voltage & current waveforms refer to msw notelet refer to msw notelet

Prof R T KennedyPOWER ELECTRONICS 219 V out 0 0 D sw TD fwd T D fwd = 1-D sw V gs I out IcIc ILIL I ds I fwd E in V ds V fwd VLVL V out E i n R I out IC IC L C I ds IL IL V ds I out I fwd V fwd V gs f sw VL VL

Prof R T KennedyPOWER ELECTRONICS 220 INDUCTOR CURRENT WAVEFORMS CCM or DCM operational mode CCM or DCM operational mode component current stress component current stress capacitor ripple current capacitor ripple current output voltage ripple output voltage ripple converter efficiency converter efficiency closed loop regulation performance closed loop regulation performance

Prof R T KennedyPOWER ELECTRONICS 221 INDUCTOR CURRENT v INDUCTANCE REDUCTION in L D sw TD fwd T 0 0 I out E in - V out -V out VLVL ILIL t

Prof R T KennedyPOWER ELECTRONICS 222 INDUCTOR CURRENT v INDUCTANCE REDUCTION in L D sw TD fwd T 0 0 I out E in -V out -V out VLVL ILIL t increased I sw,max I fwd,max I C,ripple V out,ripple

Prof R T KennedyPOWER ELECTRONICS 223 INDUCTOR CURRENT

Prof R T KennedyPOWER ELECTRONICS 224 INDUCTOR CURRENT 0 ILIL t I out D sw = 0.2 D sw = 0.5 D sw = 0.8 D sw > 0.5 D sw < 0.5 D sw = 0.5

Prof R T KennedyPOWER ELECTRONICS 225 INDUCTOR CURRENT 0 ILIL t UPSLOPE DOWNSLOPE

Prof R T KennedyPOWER ELECTRONICS 226 INDUCTOR PEAK-PEAK RIPPLE CURRENT

Prof R T KennedyPOWER ELECTRONICS 227 ILIL ILIL ILIL t t t

Prof R T KennedyPOWER ELECTRONICS 228 ILIL ILIL ILIL t t t 

Prof R T KennedyPOWER ELECTRONICS 229 ILIL ILIL ILIL t t t 

Prof R T KennedyPOWER ELECTRONICS 230 ‘IDEAL’ BUCK CCM DEVICE CURRENT

Prof R T KennedyPOWER ELECTRONICS 231 ‘IDEAL’ BUCK CCM DEVICE CURRENT

Prof R T KennedyPOWER ELECTRONICS 232 ‘IDEAL’ BUCK CCM TRANSISTOR CURRENT

Prof R T KennedyPOWER ELECTRONICS 233 ‘IDEAL’ BUCK CCM RECTIFIER CURRENT

Prof R T KennedyPOWER ELECTRONICS 234 OUTPUT EFFECTS E i n C L V out = 0 s/c I in t 0

Prof R T KennedyPOWER ELECTRONICS 235 OUTPUT EFFECTS E i n C L V out  E in o/c

Prof R T KennedyPOWER ELECTRONICS 236 POWER - UP EFFECT E i n C R V out V c = 0 L

Prof R T KennedyPOWER ELECTRONICS 237 POWER - DOWN EFFECT E i n C R V out L

Prof R T KennedyPOWER ELECTRONICS 238 CCM-DCM BOUNDARY

Prof R T KennedyPOWER ELECTRONICS 239 CCM-DCM BOUNDARY boundary

Prof R T KennedyPOWER ELECTRONICS 240 CCM-DCM BOUNDARY boundary CCM DCM

Prof R T KennedyPOWER ELECTRONICS 241 CCM / DCM determined by R CCM-DCM BOUNDARY L D sw f sw constant to ensure a desired CCM does not transfer to DCM specify a minimum load current (maximum R) avoid open circuit operation CCM DCM INCREASE R ‘light loading’

Prof R T KennedyPOWER ELECTRONICS 242 CCM / DCM determined by L CCM-DCM BOUNDARY R D sw f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest inductance including  L v  I CCM DCM DECREASE L

Prof R T KennedyPOWER ELECTRONICS 243 CCM / DCM determined by f sw CCM-DCM BOUNDARY R D sw f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest frequency CCM DCM DECREASE f sw

Prof R T KennedyPOWER ELECTRONICS 244 CCM / DCM determined by D sw CCM-DCM BOUNDARY L R f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest duty cycle CCM DCM DECREASE D sw

Prof R T KennedyPOWER ELECTRONICS 245 LINE & LOAD REGULATION DCM CCM

Prof R T KennedyPOWER ELECTRONICS 246 LINE & LOAD REGULATION DCM CCM