Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.

Slides:



Advertisements
Similar presentations
Weak Coherent Kaon Production L. Alvarez-Ruso 1, J. Nieves 1, I. Ruiz Simo 2, M. Valverde 3, M. Vicente Vacas 1 1.IFIC, Universidad de Valencia 2.Universidad.
Advertisements

Lattice study for penta-quark states
Hadron physics with GeV photons at SPring-8/LEPS II
 の光発生反応 中村 聡 (阪大理) 共同研究者: 慈道 大介 ( 首都大) Prog. Theor. Exp. Phys. (2014) 023D01.
Exotic states in S=1 N  K system and low lying ½+ S=-1 resonances Kanchan Khemchandani, Departamento de Fisica, Universidad de Coimbra, Portugal. 19th.
NSTAR 2007Roelof Bijker, ICN-UNAM1 Flavor Asymmetry of the Nucleon Sea in an Unquenched Quark Model Introduction Degrees of freedom Unquenched quark model.
José A. Oller Univ. Murcia, Spain Chiral Dynamics of the Two Λ(1405) States José A. Oller Univ. Murcia, Spain Introduction: The Chiral Unitary Approach.
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
1. Introduction 2.     3.  p    n 4.     5.     A   A 6. Discussion 7. Summary Bosen Workshop 2007 Review on.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
Scalar  and  interaction within a chiral unitary approach HYP2006, Mainz,13 th Oct 2006 Kenji Sasaki E. Oset M. J. Vicente Vacas (Valencia University.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Sevil Salur for STAR Collaboration, Yale University WHAT IS A PENTAQUARK? STAR at RHIC, BNL measures charged particles via Time Projection Chamber. Due.
Y. Ikeda and T. Sato (Osaka Univ.) ストレンジ・ダイバリオンの 質量と崩壊幅の研究 KNN resonance (Recent theoretical progress) KNN resonance (Recent theoretical progress) Faddeev.
Yoichi Ikeda (Osaka Univ.) in collaboration with Hiroyuki Kamano (JLab) and Toru Sato (Osaka Univ.) Introduction Introduction Our model of KN interaction.
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector Bao-Xi SUN ( 孙宝玺 ) Beijing University of Technology Hirschegg.
Workshop on LEPS/SPring-8 new beamline, 28~29 July 2005, RCNP, Japan  + photoproduction with vector K* (including other recent results) Seung-il Nam *1,2.
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector 孙宝玺 北京工业大学 合作者 : 吕晓夫 四川大学 FHNP’15, 怀柔, 北京.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Workshop on “Extractions and interpretations of hadron resonances and multi-meson production reactions with 12 GeV upgrade”, May 27-28, 2010 Cascade Baryons:
Magnetic moments of baryon resonances Teilprojekt A3 Volker Metag II. Physikalisches Institut Universität Giessen Germany SFB/TR16 Mitgliederversammlung.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
Hyun-Chul Kim Department of Physics Inha University In collaboration with H.Y. Ryu, A. Hosaka, A. Titov EFB 22, Sept. 10, meson photoproduction.
Signature of strange dibaryon in kaon-induced reaction Shota Ohnishi A in collaboration with; Y. Ikeda B, H. Kamano C, T. Sato A A; Department of Physics,
1 Tomoaki Hotta (RCNP, Osaka Univ.) for The LEPS Collaboration Cracow Epiphany Conference, Jan 6, 2005 Introduction LEPS experiment Results from new LD.
Mixing properties of a 1 (1260) axial vector meson ~ Composite and elementary natures ~ Hideko NAGAHIRO (Nara Women’s University) H. Nagahiro, K. Nawa,
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Dynamical coupled-channels study of meson production reactions from Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) MENU2010,
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physic, National Taiwan University  Motivations  Model for  * N →  N DMT (Dubna-Mainz-Taipei)
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
4-quark operator contributions to neutron electric dipole moment Haipeng An, University of Maryland; PHENO 2009 In collaboration with Xiangdong Ji, Fanrong.
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
June 16-20, 2005 北京 1 Atsushi Hosaka (RCNP, Osaka Univ) Decay and production of  + hep-ph/ , PRD71: (2005) A. H., M. Oka and T. Shinozaki.
Nucleon resonances via H,D(  ) reactions GeV  Experiments at GeV  Hall at LNS : GeV  Hall, 2003: STB tagger II, SCISSORS II, STB special.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
The phi meson in nuclear matter - recent result from theory - Talk at ECT* Workshop “New perspectives on Photons and Dileptons in Ultrarelativistic Heavy-Ion.
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
Spectral functions of mesons at finite temperature/density Talk at the 31 st Reimei workshop on hadron physics in extreme conditions at J-PARC, Tokai,
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
Hyperon Polarization in Heavy ion Collisions C. C. Barros Jr. Universidade Federal de Santa Catarina Brasil Strangeness in Quark Matter 2013 University.
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
U-spin and the Radiative decay of Strange Baryons K. Hicks and D.Keller EM Transition Form Factor Workshop October 13, 2008.
Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.
5 th APFB Conference August 22-26, 2011, Seoul, Korea Hyperons analogous to  Yongseok Oh (Kyungpook National University, Korea)
1 Keitaro Nagata and Atsushi Hosaka Research Center for Nuclear Physics, Osaka Univ. Quark-Diquark approach for the nucleon and Roper resonance Workshop.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Evidence for a new resonance S *(1380) with J P =1/2  JiaJun WU In collaboration with S. Dulat and B. S. ZOU.
1  - mesic nuclei and baryon chiral symmetry in medium Hideko Nagahiro (Nara Women’s Univ.) collaborators: Daisuke Jido (Tech. Univ. Muenchen) Satoru.
Meson and Baryon Resonances from the interaction of vector mesons Hidden gauge formalism for vector mesons, pseudoscalars and photons Derivation of chiral.
The study of pentaquark states in the unitary chiral approach
Hadron spectroscopy Pentaquarks and baryon resonances
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
Three-body hadronic molecules.
Photoproduction of K* for the study of the structure of L(1405)
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Photoproduction of K* for the study of L(1405)
Baryon Resonances Baryon ground states and excited states
Shota Ohnishi (Tokyo Inst. Tech. / RIKEN)
Signature of L(1405) in K-dpSn reaction
On the analytic structure of the KN - pS scattering amplitudes
5-quark states in a chiral potential Atsushi Hosaka (RCNP)
Presentation transcript:

Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D. Jido b, S.I. Nam a, E. Oset c, A. Ramos d and M. J. Vicente Vacas c

1. Structure of  (1405) 1. Motivation : Two poles? 2. Chiral unitary model 3. Pole structure of  (1405) 4. Photo-production of K *  (1405) 2. Quantum numbers of   1. Present status of theoretical studies 2. Chiral model for K + p ->  + KN 3. Results 4. Polarization test Contents

Motivations : Two poles? Cloudy bag model (1990) J. Fink et al. PRC41, 2720 Chiral unitary model (2001~) J. A. Oller et al. PLB500, 263 E. Oset et al. PLB527, 99 D. Jido et al. PRC66, T. Hyodo et al. PRC68, There are two poles of the scattering amplitude around nominal  (1405) energy region.  (1405) : J P =1/2 , I=0 ChU model, T. Hyodo

Chiral unitary model Unitarity of S-matrixChiral symmetry Flavor SU(3) meson-baryon scatterings (s-wave) Resonances Low energy behavior Non-perturbative resummation  (1405),  (1670), N(1535),  (1620),  (1620) Dynamical generation

Chiral perturbation theory Unitarization Framework of the chiral unitary model Resonances Generated resonances are expressed as poles of the scattering amplitude.

Total cross sections of K  p scatterings T. Hyodo, et al., Phys. Rev. C 68, (2003)

 (1405) in the chiral unitary model D. Jido, et al., Nucl. Phys. A 723, 205 (2003)  mass distribution i (  i (KN)

Example : the   p -> K 0  reaction Chiral term N(1710) Chiral unitary model

Results for   p -> K 0  T. Hyodo, et al., nucl-th/ , Phys. Rev. C, in press Total cross sections [mb] Mass distribution � There are two mechanisms in the initial stage interaction, which filter each one of the resonances. Good agreement  (1385) effect

Photoproduction of K*  (1405) Only K  p channel appears at the initial stage Higher pole ??

Effective interactions for meson part 1.  VP coupling 2. VPP coupling

Effective interaction for  (1385) 3.  (1385) MB coupling 4. K  P ->  (1385) -> MB amplitude SU(6) symmetry

 invariant mass distribution P lab = 2.5 GeV/c sqrt s ~ 2.35 GeV Preliminary

Result : Total cross section Preliminary

Summary and conclusions We study the structure of  (1405) using the chiral unitary model. � There are two poles of the scattering amplitude around nominal  (1405). Pole 1 ( i) : strongly couples to KN state Pole 2 ( i) : strongly couples to  state � By observing the  mass distribution in the  p -> K *  (1405) reaction, it could be possible to isolate higher energy pole.

Appendix : other processes  p -> K     p ->  J.C. Nacher, et al., PLB461, 299(1999) J.C. Nacher, et al., PLB445, 55(1999) SPring-8 J-PARC?

  baryon : Introduction  + : 5-quark (4 quark + 1 anti-quark) LEPS, T. Nakano et al., Phys. Rev. Lett. 91 (2003) Quantum numbers are not yet determined Theory prediction D. Diakonov et al. (chiral quark soliton) Naive quark model S. Capstick et al. (isotensor formulation) A. Hosaka (chiral potential) R. L. Jaffe et al. (qq-qq-q : ) J. Sugiyama et al. (QCD sum rule) F. Csikor et al. (Lattice QCD) S. Sasaki (Lattice QCD) : 1/2 +, I=0 : 1/2  : 1/2 , 3/2 , 5/2 , I=2 : 1/2 + (strong  ) : 1/2 +, I=0 : 1/2 , I=0 : 1/2 + -> 1/2  : 1/2  S = +1, M  ~ 1540 MeV,   < 25 MeV

Photo-production process W. Liu et al. nucl-th/ S. I. Nam et al. hep-ph/ W. Liu et al. nucl-th/ Y. Oh et al. hep-ph/  p -> K 0  ,  n -> K    Model (mechanism) dependence Form factor dependence Unknown parameters Initial cm energy ~ 2 GeV (p cm ~ 750 MeV) not low energy -> linear or nonlinear? N * resonances, K * exchange,   exchange,… Monopole, dipole…, value of , …  coupling, K * p  coupling, … Assuming the quantum numbers (spin, parity), we can calculate a reaction

Motivation and advantage K + p ->  +  + ->  + K + n ( K 0 p ) Low energy model is sufficient (p cm ~ 350 MeV) take decay into account -> background estimation -> Width independent Hadronic process : clear mechanism We propose to extract a qualitative behavior which depends on the quantum numbers of  . Determination of quantum numbers New : pp ->    , A. W. Thomas, K. Hicks, and A. Hosaka, hep-ph/

A model for   p ->  + K + n E. Oset and M. J. Vicente Vacas, PLB386, 39(1996) Vertices are derived from the chiral Lagrangian Proportional to vanishes Assume final  + is almost at rest Dominant

Diagrams Tree level (background) One loop

Possibilities of spin & parity 1/2  (KN s-wave resonance) 1/2 ,  3/2  (KN p-wave resonance) M R = 1540 MeV  = 20 MeV

Resonance term Amplitude of resonance term for K + p ->  + K + n :

Angular dependence

Mass distributions

Polarization test # Same result is obtained for final pK 0

Angular dependence : polarization test

Mass distributions : polarization test

Incomplete polarization 100 % 80 % 0 %

Conclusion We calculate the K  p ->  0 KN reaction using a chiral model, assuming the possible quantum numbers of  + baryon. � If we find the resonance with polarization test, the quantum number of  + can be determined as I=0, J P =1/2 + T. Hyodo, et al, nucl-th/ , Phys. Lett. B, in press E. Oset, et al, nucl-th/ , Hyp03 proceedings

Future work � Full calculation of the present reaction without approximation of kinematics -> information from  + angular dependence � photo-production of K * and  V. Kubarovsky et al., hep-ex/