시스템별 스펙정리.

Slides:



Advertisements
Similar presentations
Doc.: IEEE /202r1 Submission July 2000 Mark Webster, IntersilSlide 1 of 22 Frequency Domain Modulators for b Mark Webster Intersil Corporation.
Advertisements

Frequency Domain Modulators for b
Iterative Equalization and Decoding
Forward Traffic Channels At the end of this section, the following objectives will have been accomplished: Understand what Forward Traffic Channels are.
Convolutional Codes Representation and Encoding  Many known codes can be modified by an extra code symbol or by deleting a symbol * Can create codes of.
INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS ETC 2010 NINTH EDITION A PHYSICAL LAYER SIMULATOR FOR WIMAX Marius Oltean, Maria Kovaci,
© UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY VDSL MCM Simulation Tim Clark VDSL Consortium Tim Clark VDSL Consortium.
IEEE802.16d IEEE802.16d Simulator WirelessMAN-OFDM-PHY layer Mohamad Charafeddine Rev-s3 24 Sept 2004.
a By Yasir Ateeq. Table of Contents INTRODUCTION TASKS OF TRANSMITTER PACKET FORMAT PREAMBLE SCRAMBLER CONVOLUTIONAL ENCODER PUNCTURER INTERLEAVER.
Modified Adjacent Frequency Coding For Increased Notch Depth under DAA/Spectral Sculpting Kevin A. Shelby, Johann Chiang, Dr. Jim Lansford Alereon Inc.
1 Peak-to-Average Power Ratio (PAPR) One of the main problems in OFDM system is large PAPR /PAR(increased complexity of the ADC and DAC, and reduced efficiency.
1 Channel Coding in IEEE802.16e Student: Po-Sheng Wu Advisor: David W. Lin.
Progress of MB-OFDM UWB Baseband System Wen-Hua Wu May 26, 2006.
1 Adaptive Channel Estimation for MB-OFDM Systems under Interfering Environments Presented by 王欽洲
presented by: Souhaibe Barkat
Performance Evaluation of WiMax Systems Metehan Dikmen and Mehmet Şafak Hacettepe University Dept. of Electrical and Electronics Engineering Beytepe,
WiMAX OFDM PHY Overview Chen-Nien Tsai Institute of Computer Science and Information Engineering National Taipei University of Technology
Module contents Technologies overview Spread Spectrum Modulation
Usage of OFDM in a wideband fading channel OFDM signal structure Subcarrier modulation and coding Signals in frequency and time domain Inter-carrier interference.
Matthew C. Valenti (presenter)
Abdul-Aziz.M Al-Yami Khurram Masood Case Study: Phase III Transmitter Receiver Simulation.
System parameters and performance CDMA-2000, W-CDMA (UMTS), GSM 900, WLAN a, WLAN b, Bluetooth. By Øystein Taskjelle.
Dr. Carl R. Nassar, Dr. Zhiqiang Wu, and David A. Wiegandt RAWCom Laboratory Department of ECE.
1 University of Canberra Advanced Communications Topics Television Broadcasting into the Digital Era by: Neil Pickford Lecture 5 DTTB Transmission Error.
III. Turbo Codes.
Doc.: IEEE / n Submission September 2004 France TelecomSlide 1 Partial Proposal: Turbo Codes Marie-Helene Hamon, Olivier Seller, John.
Doc.: IEEE /1484r1 Submission November 2011 Hongyuan Zhang, et. Al.Slide 1 11ah Data Transmission Flow Date: Authors:
A Novel technique for Improving the Performance of Turbo Codes using Orthogonal signalling, Repetition and Puncturing by Narushan Pillay Supervisor: Prof.
Digital Communications I: Modulation and Coding Course Term Catharina Logothetis Lecture 12.
Doc.: IEEE /383 Submission November1998November 1998 Jamshid Khun-Jush, ETSI-BRANSlide 1 BRAN#11 PHY Decisions & Issues to Resolved with
Section 3:cdma2000 Reverse Link 1 cdma2000 Reverse Link.
Presented by: Ahmad Salim. 2  The acronym WiMAX stands for “Worldwide Interoperability for Microwave Access”. It is based on IEEE standard for.
Introduction of Low Density Parity Check Codes Mong-kai Ku.
Doc.: IEEE /081r2 Submission February 2004 McCorkle, MotorolaSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
TI Cellular Mobile Communication Systems Lecture 4 Engr. Shahryar Saleem Assistant Professor Department of Telecom Engineering University of Engineering.
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
Philips Research r0-WNG 1 / 23 IEEE session Hawaii November 2002 Alexei Gorokhov, Paul Mattheijssen, Manel Collados, Bertrand Vandewiele,
Doc.: IEEE /663r3 Submission May 2012 Zhanji Wu, et. Al.Slide 1 Low-rate compatible BCC for IEEE ah lowest MCS Date: Authors:
Digital Communications I: Modulation and Coding Course Term Catharina Logothetis Lecture 9.
An ARQ Technique Using Related Parallel and Serial Concatenated Convolutional Codes Yufei Wu formerly with: Mobile and Portable Radio Research Group Virginia.
Relationship to IEEE & WiMAX Max Riegel
Presented by: Ahmad Salim. 2  The acronym WiMAX stands for “Worldwide Interoperability for Microwave Access”. It is based on IEEE standard for.
(c) 2013 R. Newman University of Florida
Implementation of Turbo Code in TI TMS320C8x Hao Chen Instructor: Prof. Yu Hen Hu ECE734 Spring 2004.
Doc.: IEEE / n Submission September 2004 France TelecomSlide 1 Partial Proposal: Turbo Codes Marie-Helene Hamon, Olivier Seller, John.
Case Study (ZigBee): Phase IV Transmitter & Receiver Simulation.
0 3GPP2 TSG-C LTE Activities Byung K. Yi TSG-C Chair ©2005 LG Electronics, Inc. LG Electronics, Inc. grants a free, irrevocable license to 3GPP2 and its.
Doc.: IEEE /1305r0 Submission November 2010 Emmanuel Monnerie (Landis+Gyr), John Buffington (Itron)Slide 1 IEEE g OFDM PHY Overview Date:
Overview of MB-OFDM UWB Baseband Channel Codec for MB-OFDM UWB 2006/10/27 Speaker: 蔡佩玲.
Komunikasi Satelit, Sukiswo, ST, MT 1 KOMUNIKASI SATELIT DIGITAL Sukiswo
a/g Kernel Identification Saba Zia Bilal Saqib.
S , Postgraduate Course in Radio Communications
1 Convolutional Codes An (n,k,m) convolutional encoder will encode a k bit input block into an n-bit ouput block, which depends on the current input block.
Introduction to OFDM and Cyclic prefix
© Tallal Elshabrawy Trellis Coded Modulation. © Tallal Elshabrawy Trellis Coded Modulation: Introduction Increases the constellation size compared to.
1 OFDM based Applications DAB-OFDM  Digital Audio Broadcasting DVD-OFDM  Digital Video Broadcasting ADSL-OFDM  Asynchronous Digital Subscriber Line.
802.16e PHY Basic concepts By Timor Israeli.
WiMAX 1EEE Protocol Stack
Shamir Stein Ackerman Elad Lifshitz Timor Israeli
Rate Mapping for SISO, AWGN channel
Coding and Interleaving
January 2004 Turbo Codes for IEEE n
Partial Proposal: Turbo Codes
Klaus Witrisal Signal Processing and Speech Communication Lab
Partial Proposal: 11n Physical Layer
Physical Layer Approach for n
IV. Convolutional Codes
9-July-2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [DecaWave Proposal for TG3c Alternative PHY]
Homework #2 Due May 29 , Consider a (2,1,4) convolutional code with g(1) = 1+ D2, g(2) = 1+ D + D2 + D3 a. Draw the.
Comm Final Project Proposal a Physical Layer
Presentation transcript:

시스템별 스펙정리

IEEE 802.11a IEEE 802.11n

IEEE 802.11a (1) Rate-dependent parameters Table 1 Modulation-dependent normalization factor KMOD

IEEE 802.11a (2) Rate-dependent parameters (Cont’) Fig. 1 BPSK, QPSK and 16QAM constellation bit encoding Table 2 BPSK, QPSK and 16QAM encoding table

IEEE 802.11a (3) Fig. 2 64QAM constellation bit encoding

IEEE 802.11a (4) Convoultional encoder Rate R=1/2 code with generator polynomials g0=1338 and g1=1718 Higher rates are derived from it by employing “puncturing” R=2/3 or 3/4 Decoding by Viterbi algorithm is recommended

IEEE 802.11a (5) Convoultional encoder (Cont’)

IEEE 802.11n (1) Rate dependent parameters for high throughput modulation and coding schemes Table 1 Symbols used in rate dependent parameters tables Table 2 Rate dependent parameters for mandatory 20MHz

IEEE 802.11n (2) Convoultional encoder A single FEC encoder is used when the PHY rate is less than or equal 300Mbps or when LDPCC ECC is used. Rate = ½ code Higher rates are derived from it by employing “puncturing” R=2/3, 3/4 or 5/6

MB-OFDM UWB

MB-OFDM UWB (1) Data rate-dependent modulation parameter Data Rate (Mb/s) Modulation Coding rate (R) Conjugate Symmetric Input to IFFT Time Spreading Factor (TSF) Overall Spreading Gain Coded bits per OFDM symbol (NCBPS) 53.3 QPSK 1/3 Yes 4 100 80 1/2 106.7 11/32 No 2 200 160 5/8 320 DCM 1 400 480 3/4 Table 1 Modulation-dependent normalization factor KMOD Modulation KMOD QPSK 1/2 Table 2 QPSK encoding table Input bit (b0 b1) I-out Q-out 00 -1 01 1 10 11 Fig. 1 QPSK constellation bit encoding

MB-OFDM UWB (2) Data rate-dependent modulation parameter (Cont’) Interleaver 1 st 16 - point Mapper S / P : 2 IFFT 100 bits nd 50 tone separation Fig. 2 Block diagram of DCM Fig. 3 16 point constellations

MB-OFDM UWB (3) Convolutional encoder Rate R=1/3 code with generator polynomials g0=1338, g1=1658, and g2=1718 Additional coding rates are derived from the rate R = 1/3 convolutional code by employing “puncturing” R=1/3, 11/32, ½, 5/8, or 3/4 Decoding by Viterbi algorithm is recommended D Output Data A Output Data B Output Data C Fig. 4 Convolutional encoder: rate R=1/3, constraint length K=7

MB-OFDM UWB (4) Convolutional encoder (Cont’) Fig. 5 An example of the bit-stealing and bit-insertion procedure (R=11/32)

T-DMB

T-DMB (1) 지상파 DMB 개념도 DAB (Eureka-147) PAD NPAD FIC MSC Audio Service MPEG4 LIVE TV Block Code DAB (Eureka-147) FIC MSC Service Data Service K-DMB Service FIDC 2 Ch Multi Ch. D L S MOT IP Tunneling TDC MPEG4 A/V Data MCI & SI T C EWS Broadcasting Web Site Interactive Service JPEG Slide Show TPEG, DGPS etc

T-DMB (2) DAB (Eureka-147) 구조도

T-DMB (3) Convolutional Coding (Mother Code) P/S Constraint: 7 Memory: 6 Code rate: ¼ Generating polynomial: (133, 171, 145, 133)o all-zero initial state of the shift register Output codeword P/S To puncturing procedure

T-DMB (4) Puncturing Block Mother code의 일부 bit가 결정된 순서에 따라 전송되지 않음

T-DMB (5) Puncturing Block (cont’d) vPI,i = 0 : the corresponding bit shall not be transmitted vPI,i = 1 : the corresponding bit shall be transmitted

T-DMB (6) Phase Reference Symbol Reference for the differential modulation for the next OFDM symbol Mode II

T-DMB (7) QPSK Symbol Mapper

T-DMB (8) Differential Modulation Applied to the QPSK symbols on the same carriers between two consecutive OFDM symbols 8 possible phase states

Wibro

WiBro IEEE 802.16 + Wibro (1) 2.3GHz 휴대인터넷 국내 기술 기준  60km/h로 이동시, 셀 경계에서 최소 하향 512kbps, 상향 128kbps 보장  채널대역폭 ≥ 9 MHz  사업자 장비간 로밍 가능  주파수 재사용계수 = 1  이중화 방식 = TDD (송수신 time slot간 동기 일치) IEEE 802.16 + WiBro 주요 파라미터 사용 대역 2.3 GHz 채널 대역폭 8.75 MHz 프레임 길이 5ms 다중접속방식 OFDMA 이중화 방식 TDD FFT 크기 1024 변조 방식 QPSK, 16-QAM, 64-QAM 채널 부호화 Convolutional Turbo Code ARQ Hybrid ARQ

Wibro (2) Wibro 송수신 블록도

Wibro (3) Convolution Turbo Code (CTC) Dual binary circular recursive systematic convolutional (CRSC)

Wibro (4) CTC interleaver First permutation Second permutation

Wibro (5) Mapping QPSK 16QAM 64QAM

CDMA (IS-95) WCDMA

CDMA (1) System parameter Duplex mode : FDD and TDD Ddata modulation : QPSK(downlink) BPSK(uplink) Channel coding : convoultional and turbo codes Convolutional coding rate = 1/3 or ½ with constraints length 9 Turbo coding rate = 1/3 Turbo coding scheme is a parallel concatenated convoultional code (PCCC) with 8 state constituent encoders Fig. 1 Overall eight-state PCCC turbo coding

CDMA (2) Convolutional Encoder Forward Link & Rate set 2 Reverse Link ; R = 1/2, K = 9, g0 = 753(8)=111101011(2) g1 = 561(8)=101110001(2) ‘1’ : Connection ‘0’ : Disconnection ex) Forward link g0 c0 Data bits input Code Symbols Output g1 c1

CDMA (2) CMDA 순방향채널의 I, Q 데이터와 위상 1 I Q 위상 /4 3/4 -3/4 -/4

WCDMA (1) System parameter Duplex mode : FDD and TDD Ddata modulation : QPSK(downlink) BPSK(uplink) Channel coding : convoultional and turbo codes Convolutional coding rate = 1/3 or ½ with constraints length 9 Turbo coding rate = 1/3 Turbo coding scheme is a parallel concatenated convoultional code (PCCC) with 8 state constituent encoders Fig. 1 Overall eight-state PCCC turbo coding

WCDMA (2) Modulation The complex-valued chip sequence generated by the spreading process is QPSK modulated The pulse shaping is root-raised cosine with roll-off factor 0.22 and is the same for the mobile and base stations Fig. 2 Modulation principle