© Fluorescence Of Thymine Tautomers At Room Temperature In Aqueous Solutions Morsy, MA; Al-Somali, AM; Suwaiyan, A AMER CHEMICAL SOC, JOURNAL OF PHYSICAL CHEMISTRY B; pp: ; Vol: 103 King Fahd University of Petroleum & Minerals Summary Fluorescence and absorption spectra of 10(-4) M thymine in aqueous solutions at different pH values are reported at room temperature. The shape of the fluorescence spectrum is found to change when the excitation wavelength is varied. The absorption spectra for the aqueous pH 4-8 thymine solutions in the range nm are believed to include the diketo tautomer T1 and the enol-keto tautomer T2. Steady- state fluorescence spectra and ab initio calculations support the existence of these neutral species in their ground state. The lifetimes of the excited states of the T1 and T2 tautomers are 0.72 and 3.87 ns, respectively. Aqueous thymine solutions with pH values below pH 3 contain a protonated enol-keto form of T2 in addition to the major diketotautomer T1 in its neutral form. The lifetime of the protonated enol-keto form is 4.2 ns. On the other hand, thymine solutions with pH values above pH 8 contain mixtures of the neutral forms of T1 and T2 as well as their monoanioic forms. However, aqueous thymine solutions at pH values above pH 11 contain a 1:1 equilibrium mixture of the monoanionic forms 1-HT- and 3-HT-. The lifetimes for these monoanionic forms are expected to be shorter than 0.05 ns. References: *WAV FUNCT INC, PC SPARTAN VER 1 1 AIDA M, 1997, SPECTROCHIM ACTA A, V53, P393 AMOUCHE A, 1997, J PHYS CHEM A, V101, P1808 BARALDI I, 1990, PHOTOCHEM PHOTOBIOL, V52, P361 Copyright: King Fahd University of Petroleum & Minerals;
© BARDY BB, 1988, CHEM PHYS LETT, V147, P538 BECKER RS, 1980, PHOTOCHEM PHOTOBIOL, V31, P5 BENOIT RL, 1986, CAN J CHEM, V64, P2348 BERENS K, 1969, PHOTOCHEM PHOTOBIOL, V9, P433 BOUGHTON JW, 1993, INT J QUANTUM CHEM, V47, P49 BROWN RD, 1989, J CHEM SOC CHEM COMM, P37 CALLIS PR, 1971, J AM CHEM SOC, V92, P3593 CALLIS PR, 1979, CHEM PHYS LETT, V61, P563 CALLIS PR, 1983, ANNU REV PHYS CHEM, V34, P329 COLARUSSO P, 1997, CHEM PHYS LETT, V269, P39 EATON WA, 1970, J CHEM PHYS, V53, P2164 ESTRIN DA, 1994, J PHYS CHEM-US, V98, P5653 FERENCZY G, 1986, J MOL STRUCT, V140, P71 GANGULY S, 1994, CAN J CHEM, V72, P1120 GERDIL R, 1961, ACTA CRYSTALLOGR, V14, P333 HASANEIN AA, 1998, J SAUDI CHEM SOC, V2, P35 HAUSWIRTH W, 1971, PHOTOCHEM PHOTOBIOL, V13, P157 HEHRE WJ, 1986, AB INITIO MOL ORBITA LES A, 1992, SPECTROCHIM ACTA A, V48, P1385 LESZCZYNSKI J, 1992, J PHYS CHEM-US, V96, P1649 LORENTZON J, 1995, J AM CHEM SOC, V117, P9265 NAKANISHI K, 1961, B CHEM SOC JPN, V34, P53 REUTHER A, 1996, J PHYS CHEM-US, V100, P5570 SHUGAR D, 1952, BIOCHIM BIOPHYS ACTA, V9, P199 SONG QH, 1998, J PHOTOCH PHOTOBIO A, V114, P181 SRIVASTAVA SK, 1980, INT J QUANTUM CHEM, V18, P827 SUWAIYAN A, 1989, CHEM PHYS LETT, V159, P244 SUWAIYAN A, 1995, CHEM PHYS LETT, V237, P349 SUWAIYAN A, 1997, SPECTROCHIM ACTA A, V53, P575 TAEKYU H, 1993, J AM CHEM SOC, V115, P11939 TSUBOI M, 1997, SPECTROCHIM ACTA A, V53, P409 TSUCHIYA Y, 1988, J PHYS CHEM-US, V92, P1760 VIGNY P, 1974, PHOTOCHEM PHOTOBIOL, V20, P15 WIERZCHOWSKI KL, 1965, J AM CHEM SOC, V87, P4621 WILLIAMS SA, 1987, J PHYS CHEM-US, V91, P2730 WILSON RW, 1975, CHEM PHYS LETT, V36, P618 ZHANG SL, 1998, J PHYS CHEM A, V102, P461 For pre-prints please write to: Copyright: King Fahd University of Petroleum & Minerals;