Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.

Slides:



Advertisements
Similar presentations
Status of the MEG Experiment W. Ootani ICEPP, University of Tokyo for the MEG collaboration.
Advertisements

Satoshi Mihara for the   e  collaboration, BV33 at PSI, Jan 2002 Report on the Progress for   e  Experiment Satoshi Mihara ICEPP, Univ. of Tokyo.
Time-of-Flight at CDF Matthew Jones August 19, 2004.
27/Jan/2005 K. Ozone 2004 年度博士論文審査会 Contents 1. MEG experiment 2. LXe Purification 3. Prototype Performance 4. Expected Performance 5. Toward the MEG experiment.
1 Satoshi Mihara for the   e  collaboration, muegamma review at PSI, Jan 2003 Photon Detector ICEPP, Univ. of Tokyo Satoshi Mihara.
Tagger Electronics Part 1: tagger focal plane microscope Part 2: tagger fixed array Part 3: trigger and digitization Richard Jones, University of Connecticut.
Shuei YAMADA, ICEPP, University of tau04 Nara, Sep. 15, Search for the Lepton Flavor Violating Decay  e  in the MEG Experiment Shuei YAMADA.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
Latest developments in Hamamatsu Large Format PMTs
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
Liquid Xenon Photon Detector Feb MEG Review Meeting Liquid Xenon Detector Part I CEX beam test at piE1 Oct-Dec/03 –Hardware operation status –Analysis.
Peter Križan, Ljubljana March 17, 2006 Super B Workshop, Frascati Peter Križan University of Ljubljana and J. Stefan Institute Aerogel RICH and TOP: summary.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
Measurement of 'intrinsic' properties of scintillating fibers H. Sakamoto Osaka University, Japan A.Sato M. Yoshida Y. Kuno Osaka Univ. K. Yoshimura KEK.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
NanoPHYS’12 – December 17-19, 2012 K. Nakano, S. Miyasaka, K. Nagai and S. Obata (Department of Physics, Tokyo Institute of Technology) Drift Chambers.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
1 Energy loss correction for a crystal calorimeter He Miao Institute of High Energy Physics Beijing, P.R.China.
Status Report for KEK-PS E391a KEK IPNS G.Y.Lim 14 April 2003.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
1 NaI calibrationneutron observation NaI calibration and neutron observation during the charge exchange experiment 1.Improving the NaI energy resolution.
Current status of MEG Experiment Yasuko HISAMATSU ICEPP, The Univ. of Tokyo ICEPP Symposium.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Overview of the experiment Collaboration (about 30 physicists at this meeting) Budget Realistic schedule and general status (few words) of each sub-detector.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
1 PMT Univ. of Tokyo Yasuko HISAMATSU ICEPP, MEG Collaboration meeting Feb. 10th, 2004.
1 PMT Univ. of Tokyo Yasuko HISAMATSU ICEPP, The University of Tokyo MEG VRVS meeting Jan. 20th, 2004.
FARICH status E.A.Kravchenko Budker INP, Novosibirsk, Russia.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.
g beam test of the Liquid Xe calorimeter for the MEG experiment
FSC status and plans Pavel Semenov IHEP, Protvino
The Electromagnetic calorimeter of the MEG Experiment
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
Status of the experiment in Italy
Development of hybrid photomultiplier for Hyper-Kamiokande
MEG II実験 液体キセノン検出器の建設状況
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Three Talks Three Talks XENON01 NOON2001 LXe detector for m  e g search Kenji Ozone Pulse tube refrigerator for liquid xenon Tomiyoshi Haruyama m  e g : status and prospects Wataru Ootani

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Collaboration Russia BINP, Novosibirs k LXe Tests and Purification Italy INFN, Pisa e+ counter, Trigger, M.C. LXe Calorimeter ● Switzerland PSI Drift Chamber, Beam Line, DAQ Japan ICEPP(Univ of Tokyo), Waseda Univ, IPNS- KEK, Osaka Univ. LXe Calorimeter, Superconducting Solenoid, M.C.

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Physics Motivation Ootani’s Talk NOON01 08/Nov Detail  Beyond the SM (SUSY)  Br( m  e g ) < 1 x  High Performance Detector Keywor d s

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Detector for m +  e + g search at PSI γ detection ● Liquid Xe Calorimeter e + detection ● COBRA Spectrometer ・ Drift Chamber ・ Drift Chamber ・ Timing Counter ・ Timing Counter ・ COBRA Magnet ・ COBRA Magnet Liquid Xe Calorimeter Drift Chamber Timing Counter Compensation Coil COBRA Magnet Surface m (10 8 sec -1 )

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Kamiokande-like SUS honeycomb compact PMTs Final Liquid Xenon Detector PMTs IN LXe Low X 0 Materials ~ 800 PMTs ~ 800 liter LXe g

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan M.C. simulation (GEANT3) Position resolution :  x,  y ~ 4mm,  z ~ 16mm FWHM Energy resolution : 1.4% FWHM

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Why Liquid Xenon ? - High Light Yield  W ph = 24 eV (NaI: 17 eV)  - Fast Decay  reduce pileups τ(fast) = 4.2 nsec  τ(slow) = 22 nsec τ(recombi.) = 45 nsec (75%) NaI: too slow CsI, BGO: poor resolution at 52.8MeV Inhomogeneous to cover large area crystal scintillators

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan PMT (HAMAMATSU R6041Q) Features Quartz window Quartz window  (cut < 160 nm) Q.E. 10% (TYP) Q.E. 10% (TYP) Transmission Transmission efficiency 79% (TYP) efficiency 79% (TYP) Works Stably at –110 o Works Stably at –110 o Endurable up to 3 atm Endurable up to 3 atm Gain 10 6 (1kV) Gain 10 6 (1kV) Metal Channel Dynode Metal Channel Dynode thin and compact thin and compact TTS 750 psec (TYP) TTS 750 psec (TYP) 32 mm 57 mm Quartz

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Small Prototype ●g source ( 137 Cs, 51 Cr, 54 Mn, 88 Y) ●a source ( 241 Am) for PMT calibration ● LED for gain adjustment ■ 2.34 liter Liquid Xe ■ 32 PMTs

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Energy Resolution ~1% in s is expected at 52.8MeV. Fitted with asym. Gaussian

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Position Resolution PMTs are divided into two groups by the y-z plane. –γ int. positions are calculated in each group and then compared with each other. –Position resolution is estimated as s z1-z2 /√2 Possible to achieve for 52.8MeV g A few mm in position meas.

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Time Resolution (small prototype) PMTs are divided again into two groups by the y-z plane. In each group the average of the time measured by TDC is calculated after slewing correction for each PMT. The time resolution is estimated by taking the difference between two groups. Resolution improves as ~ 1/√Npe s <50psec at 52.8 MeV. M.C. expects ~ 20, MeV

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Brief Summary on Small Prototype Energy; ~1% Position; a few mm Time; ~50psec in s at 52.8MeV Go to the next stage!! Large Prototype Go to the next stage!! Large Prototype Extrapolation to Higher Energy

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Large Prototype ・ 228 PMTs ・ 68.6 liter LXe ・ beam test for< 40 MeV g

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Purpose of Large Prototype Pre-Final Detector Test for detector components PMTs, feedthroughs(HV, signal), refrigerator, vacuum chamber, cables, PMT holder, DAQ, … Performance Test  Energy, Time, Position  Small proto: < 2MeV …… Compton scat. Large proto: < 40 MeV … pair creation Attenuation Length Measurement

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Inside ー Mini-Kamiokande Large Prototype Small Prototype 372 mm 496 mm 372 mm (116x116x174 mm 3 ) Xe [liter] PMTs SMALL LARGE FINAL ~800

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan 1st Beam Test For 1 weeks in June, 2001 Compton Edge ~ 43 MeV ADC broken...  Pedestal shift  ADC overflow Most of data became unavailable survived data AIST, Japan Everything worked very well. But …

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Gain adjustment with LEDs ● 8 LEDs inside PMT holder ● Scan HV to get gain curves for all PMTs ■ Gain = 2 ×10 6 ■ Gain was roughly adjusted. Typical gain curve In LXe

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan After 1st Beam Test First Beam Test in June  Every components tested. All OK!  Ready for next test. Attenuation Length Measurement with Large Proto  Now running and analyzing (to be talked someday) Second test scheduled in Sep. was suspended by the machine trouble at AIST. Next Beam AIST at the beginning of 2002y

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Step1 PMT1:Absorption + Scattering Length measurement PMT2: used as a reference. Collimators to prevent scinti. light from hitting the wall. Mask in front of PMT1 to define the illuminated area on the photo cathode. Step1 PMT1:Absorption + Scattering Length measurement PMT2: used as a reference. Collimators to prevent scinti. light from hitting the wall. Mask in front of PMT1 to define the illuminated area on the photo cathode. Step2 PMT2: Scatt. Length meas. PMT1: reference at a fixed point. Step2 PMT2: Scatt. Length meas. PMT1: reference at a fixed point. dL/L ~ 5 x L(m) [%] A Plan for Attenuation Length Measurement LN 2 X - ray PMT1 PMT2

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan tokyo.ac.jp tokyo.ac.jp Small Prototype  Result in successful  expected performance at 52.8 MeV; s E ~ 1%, s t ~ 50 psec, s pos ~ a few mm Large Prototype  The next beam test is scheduled at the beginning of next year.  Attenuation length measurement with cosmic ray in Tsukuba, Japan Others  Attenuation length measurement with X-ray source in Novosibirsk, Russia Summary

End of Transparencies

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan μ beam stopped on the target 10 8 /sec –E e =52.8MeV E γ =52.8MeV Back to back, in time Sensitivity –N m =1x10 8 /sec, 2.2x10 7 sec running Ω /4 π =0.09,ε e =0.95, ε γ =0.7, and ε sel =0.8  Single Event sensitivity : 0.94x Main background sources –Radiative μ + decay –Accidental overlap NOT back to back, NOT in time  Reduced down to level Signal and Backgrounds e γ ν ν ? e γ μ e ν ν γ

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Physics Motivation ● MEGA (~ 1999 ) Br <1.2× ● SINDRUM II ( μ e conversion search) ● SK (neutral lepton) ● Anomalous Muon (g-2) SU(5) SUSY Associated Topics 1)J. Hisano et al., Phys. Lett. B391 (1997) 341 2)MEGA collaboration, hep-ex/ m  e g search is a promising field to find physics beyond the SM

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan What’s the difference ? Xe [liter] PMTsE g [MeV] SMALL ~ 1.8 LARGE ~ 40 FINAL ~800 ≦ 52.8

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan front face X 0 (cm)thickness LXe2.87― G ~ 0.15 X 0 Lucite ~ 0.04 X 0 RTV 10~30? 0 ~ 10 –2 X 0 Al Window SUSHoneycomb PMT Conversion γ Xe Max 0.23 X 0

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan ADC trouble Some broken amps on an ADC caused heavy damage to many amps on all ADCs. Impossible to estimate resolutions with all PMTs. overflow  overflow  Pedestal shift

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Position resolution (preliminary) ● Survived 10 PMTs were divided into two groups, Upper and Lower. ● Estimated position in each group was compared with each other.

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Timing resolution (preliminary) ● Similarly to the small type, calculated by taking the difference between two groups. ● ADC trouble prevented from making slewing correction and selecting adequate events. s t ~ 400 psec If slewing correction had been made, this tail would have been put together into the peak.

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Analysis Position of g interaction : Weighting the position of the PMTs with their individual pulse heights For selecting the fully contained events: Requiring the g int. position should lie within a central region of 2cmx1cm 

03/Dec/2001 K. Ozone Xenon01 Workshop @ ICRR, Univ. of Tokyo, Kashiwa, Japan Analysis g -ray ● Not be tagged by electron ● Energy is not monochromatic ( Compton edge ) ● Focused with a 1-mm  collimator Resolutions ■ Energy is estimated by means of the spread of Compton edge. ■ Position is calculated as the difference of position estimated in two groups. (like the case of small ptototype) ■ Time is the difference of the average time estimated in two groups. Compton Edge ~ 43 MeV