Announcement Course Exam November 3rd In class: 90 minutes long Examples will be posted on the course website.

Slides:



Advertisements
Similar presentations
Chapter 3. HVAC Delivery Systems
Advertisements

Heating, Ventilating, and Air-Conditioning
eQuest Quick Energy Simulation Tool
Environmental Controls I/IG Lecture 14 Mechanical System Space Requirements Mechanical System Exchange Loops HVAC Systems Lecture 14 Mechanical System.
HVAC 101 The Basics of Heating, Ventilation and Air Conditioning
HVAC Systems Overview HVAC Overview - # 1 Tom Lawrence
Announcement Course Exam October 6 th (Thursday) In class: 90 minutes long Examples are posted on the course website.
Lecture Objectives: Model processes in AHU –Use eQUEST predefined models –Use detail modeling Define your topics for your final project.
Energy use in buildings Dr. Atila Novoselac Associate Professor Department of Civil, Architectural and Environmental Engineering, ECJ
Lecture Objectives: Finish wit introduction of HVAC Systems Introduce major ES software.
Lecture Objectives: Model HVAC Systems –HW3 Asignemnet Learn about eQUEST software –How to conduct parametric analysis of building envelope.
Lecture Objectives: Final discussion about HW3 Introduce more final project topics Continue with HVAC Systems.
Lecture Objectives: Model processes in AHU –Use eQUEST predefined models –Use detail modeling Define your topics for your final project.
Equation solvers Matlab Free versions / open source codes: –Scilab MathCad: Mathematica:
Lecture Objectives: Finish with HVAC Systems Discuss Final Project.
Lecture Objectives: Specify Exam Time Finish with HVAC systems –HW3 Introduce Projects 1 & 2 –eQUEST –other options.
Lecture Objectives: Analyze the unsteady-state heat transfer Conduction Introduce numerical calculation methods Explicit – Implicit methods.
Lecture Objectives: Finish with software intro HVAC Systems
Lecture Objectives: -Discuss the final project presentations -Energy simulation result evaluation -Review the course topics.
Lecture Objectives: Discuss –solar radiation and heat transfer through windows –Internal heat loads Introduce Homework Assignment 1b –solve 1/3 of the.
Project group members and presentation time Thursday Chris Holcomb Cristian Wolleter Michelle Noriega Mei Baumann, Zahid Alibhai, Ellie Azolaty Randy Maddox.
Announcement about the final project presentations: Thursday 8:00 – 10:45 am 16 presentations – 5 minutes each +2 minutes for Q&A PowerPoint –Upload the.
Lecture Objectives: Clarify issues related to eQUEST –for midterm project Learn more about various HVAC - economizer - heat recovery Discuss about the.
Lecture Objectives: Discuss Project 1 and Final Project Learn about Photo Voltaic systems –Discuss HW3 Discuss system of equations solvers - learn what.
Lecture Objectives: Discuss the HW1b solution Learn about the connection of building physics with HVAC Solve part of the homework problem –Introduce Mat.
Lecture Objectives: Summarize heat transfer review
Lecture Objectives: -Discus Final Project -Learn about Solar Systems -HW3 (final HW assignment) -HVAC system.
Lecture Objectives: Discuss exam questions
Lecture Objectives: -Define the midterm project -Lean about eQUEST -Review exam problems.
Announcement Course Exam November 3rd In class: 90 minutes long Examples will be posted on the course website.
Lecture Objectives: Finish with system of equation for
Lecture Objectives: Continue with linearization of radiation and convection Example problem Modeling steps.
Development of a new Building Energy Model in TEB Bruno Bueno Grégoire Pigeon.
Announcement Course Exam October 6 th (Thursday) In class: 90 minutes long Examples are posted on the course website.
Lecture Objectives: Review, Discuss HW1a, and correct some typos Define Typical Meteorological Year (TMY) Boundary Conditions at Internal Surfaces.
Lecture Objectives: Learn about Boundary Conditions at Internal Surfaces solar radiation and heat transfer through windows Internal heat loads Introduce.
Lecture Objectives: Discuss the exam problems Answer question about HW 3 and Final Project Assignments Building-System-Plant connection –HVAC Systems.
Lecture Objectives: Differences in Conduction Calculation in Various Energy Simulation Programs Modeling of HVAC Systems.
Lecture Objectives: Define the final project Deliverables and Grading policy Analyze factors that influence accuracy of our modeling study Learn about.
Announcement Course Exam: Next class: November 3rd In class: 90 minutes long Examples are posted on the course website.
Final Project Format and Deliverables Examples
Final Project I need your proposal about the final project! It should include –Title –Group members –Objective –Short description –Methodology –Expected.
Lecture Objectives: -Discuss about the final project and presentation -Introduce advance simulation tools -Review the course topics.
Equation solvers Scilab Matlab
Lecture Objectives: Answer question related to HW 4 Learn about Life Cycle Cost Analysis (LLC) tools in eQUEST Learn about specifics related to modeling.
Lecture Objectives: Accuracy of the Modeling Software.
Lecture Objectives: Learn about detailed vs. empirical modeling Discuss accuracy of energy modeling Introduce life-cycle cost analysis –integrated in eQUEST.
Lecture Objectives: Discuss HW3 parts d) & e) Learn about HVAC systems
Final project presentations
Lecture Objectives: Discuss Final Project
We need to decide about the time for the final project presentation
Lecture Announcement Developing Concrete with a Structural and Thermal Insulation Performance and Homogenous and Stratified Approach Dr. Mauricio Lopez.
Heating, Ventilating, and Air Conditioning
Lecture Objectives: Discuss exam questions
Lecture Objectives: Discus Final Project Learn about Solar Systems
Lecture Objectives: Answer questions related to HW 4
Lecture Objectives: Finish with HVAC systems
Lecture Objectives: Discuss accuracy of energy simulation and Introduce advance simulation tools Review the course topics Do the Course and Instructor.
Lecture Objectives: Discuss HW3 parts d) & e) Learn about HVAC systems
Lecture Objectives: Answer questions related to HW 4
Heating, Ventilating, and Air-Conditioning
Objectives Discuss Project 1 (eQUEST) Learn about HVAC Systems
October 31st In class test!
Lecture Objectives: Discus Final Project Learn about Solar Systems
Lecture Objectives: Discuss HW4 parts
Lecture Objectives: Review linearization of nonlinear equation for unsteady state problems Learn about whole building modeling equations.
Make up: Project presentation class at the end of the semester
Lecture Objectives: Finish with major ES software Introduce HW 4.
Announcements Exam 1 Next Class (Thursday, March 14th):
Presentation transcript:

Announcement Course Exam November 3rd In class: 90 minutes long Examples will be posted on the course website

Announcement -Project 1 Due This Thursday - Course Exam is on November 3rd In class: 90 minutes long Examples are posted on the course website

Lecture Objectives: Learn about weather files (TMY) Discuss Modeling steps Learning about QUEST and other software

Typical Meteorological Year (TMY) Collation of one year weather data for a specific location Generated from a historic data to represent typical year Not an average year! It contains real data … … JanuaryFebruaryMarchAprilMayDecember Most typical moth …..

What is in TMY

TMYs Data sets TMY –Generated in 1981 for 26 U.S. locations for the period of 1952 to 1975 TMY2 –In 1990 reformatted and expanded to larger number of location. Also updated to reflect TMY3 –In 2005 with greater emphasis on solar radiation data as well as the inclusion of precipitation data. –Include data for ~ 2,500 locations primarily in the United States and Europe, but also world wide. – – TMY4 –is coming soon (an update for the changing climate)

Modeling

1) External wall (north) node 2) Internal wall (north) node Q solar =  solar ·(I dif +I DIR ) A Q solar +C 1 ·A(T sky 4 - T north_o 4 )+ C 2 ·A(T ground 4 - T north_o 4 )+h ext A(T air_out -T north_o )=Ak/  (T north_o -T north_in ) C 1 =  sky ·  surface  long_wave ·  ·F surf_sky Q solar_to int surf =  portion of transmitted solar radiation that is absorbed by internal surface C 3 A(T north_in 4 - T internal_surf 4 )+C 4 A(T north_in 4 - T west_in 4 )+ h int A(T north_in -T air_in )= =kA(T north_out-- T north_in )+Q solar_to_int_ considered _surf C 3 =  niort_in ·  ·  north_in_to_ internal surface for homework assume  ij  F ij  i A- wall area [m 2 ]  - wall thickness [m] k – conductivity [W/mK]  - emissivity [0-1]  - absorbance [0-1]  =  - for radiative-gray surface,  sky =1,  ground =0.95 F ij – view (shape) factor [0-1] h – external convection [W/m 2 K] s – Stefan-Boltzmann constant [ W/m 2 K 4 ] C 2 =  ground ·  surface  long_wave ·  ·F surf_ground

Matrix equation M × t = f for each time step b 1 T 1  +  +c 1 T 2  +  =f(T air,T 1 ,T 2  ) a 2 T 1  +  b 2 T 2  +  +c 2 T 3  +  =f(T 1 ,T 2 , T 3  ) a 3 T 2  +  b 3 T 3  +  +c 3 T 4  +  =f(T 2 ,T 3 , T 4  ) a 6 T 5  +  b 6 T 6  +  =f(T 5 ,T 6 , T air ) ……………………………….. M × t = f Modeling

Modeling steps Define the domain Analyze the most important phenomena and define the most important elements Discretize the elements and define the connection Write the energy and mass balance equations Solve the equations (use numeric methods or solver) Present the result

Structure of ES programs Solver Interface for input data Graphical User Interface (GUI) Interface for result presentation Preprocessor Engine Preprocessor ASCI file ASCI file

Modeling steps Define the domain Analyze the most important phenomena and define the most important elements Discretize the elements and define the connection Write energy and mass balance equations Solve the equations Present the result ES program Preprocessor Solver Postprocessor

ES programs Large variety DOE2 eQUEST (DOE2) BLAST ESPr TRNSYS EnergyPlus (DOE2 & BLAST)

eQUEST (DOE2) US Department of Energy & California utility customers eQUEST - interface for the DOE-2 solver DOE-2 - one of the most widely used ES program - recognized as the industry standard eQUEST very user friendly interface Good for life-cycle cost and parametric analyses Not very large capabilities for modeling of different HVAC systems Many simplified models Certain limitations related to research application - no capabilities for detailed modeling

eQUEST Download it at Examples related to: –Defining envelope and internal loads –Selecting HVAC system –Presenting results –Finding design cooling and heating loads – Extracting simulation detail

ESPr University of Strathclyde - Glasgow, Scotland, UK Detailed models – Research program Use finite difference method for conduction Simulate actual physical systems Enable integrated performance assessments Includes daylight utilization, natural ventilation, airflow modeling CFD, various HVAC and control models Detail model – require highly educated users Primarily for use with UNIX operating systems

ESPr University of Strathclyde - Glasgow, Scotland, UK Detailed models – Research program

TRNSYS Solar Energy Lab - University of Wisconsin Modular system approach One of the most flexible tools available A library of components Various building models including HVAC Specialized for renewable energy and emerging technologies User must provide detailed information about the building and systems Not free

Component-based simulation programs - Trnsys

EnergyPlus U S Department of Energy Newest generation building energy simulation program ( BLAST + DOE-2) Accurate and detailed Complex modeling capabilities Large variety of HVAC models Some integration wit the airflow programs Zonal models and CFD Detail model – require highly educated users Very modest interface Third party interface – very costly

EnergyPlus

eQUEST Download it at: – Start working on Project 1

eQUEST HVAC Models Predefined configuration (no change) Divided according to the cooling and heating sources Details in e quest help file: For example: DX CoilsNo Heating –Packaged Single Zone DX (no heating) Packaged single zone air conditioner with no heating capacity, typically with ductwork. –Split System Single Zone DX (no heating) Central single zone air conditioner with no heating, typically with ductwork. System has indoor fan and cooling coil and remote compressor/condensing unit. –Packaged Terminal AC (no heating) Packaged terminal air conditioning unit with no heating and no ductwork. Unit may be window or through-wall mounted. –Packaged VAV (no heating) DX CoilsFurnace Packaged direct expansion cooling system with no heating capacity. System includes a variable volume, single duct fan/distribution system serving multiple zones each with it's own thermostatic control. –Packaged Single Zone DX with Furnace Central packaged single zone air conditioner with combustion furnace, typically with ductwork. –Split System Single Zone DX with Furnace Central single zone air conditioner with combustion furnace, typically with ductwork. System has indoor fan and cooling coil and remote compressor/condensing unit. –Packaged Multizone with Furnace Packaged direct expansion cooling system with combustion furnace. System includes a constant volume fan/distribution system serving multiple zones, each with its own thermostat. Warm and cold air are mixed for each zone to meet thermostat control requirements.

Building HVAC Systems (Primary and Secondary Building Systems) AHU Building envelope Cooling (chiller) (or Gas) Electricity Gas Heating (boilers) Fresh air For ventilation Distribution systems Air transport Secondary systems Primary systems AHU – Air Handling Unit HVAC systems affect the energy efficiency of the building as much as the building envelope

Integration of HVAC and building physics models Building Heating/Cooling System Plant Building Heating/Cooling System Plant Load System Plant model Integrated models Q buiolding Q including Ventilation and Dehumidification

Example of System Models: Schematic of simple air handling unit (AHU) m - mass flow rate [kg/s], T – temperature [C], w [kg moist /kg dry air ], r - recirculation rate [-], Q energy/time [W] Mixing box