Sympathetic Laser Cooling of Molecular Ions to the μK regime C. Ricardo Viteri and Kenneth Brown Georgia Institute of Technology, School of Chemistry and.

Slides:



Advertisements
Similar presentations
Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Advertisements

Ion-Induced Instability of Diocotron Modes In Magnetized Electron Columns Andrey Kabantsev University of California at San Diego Physics Department Nonneutral.
Optical clocks, present and future fundamental physics tests
First Year Seminar: Strontium Project
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Development of an External Cavity Quantum Cascade Laser for High- Resolution Spectroscopy of Molecular Ions JACOB T. STEWART, BRADLEY M. GIBSON, BENJAMIN.
大阪大学 大学院基礎工学研究科 占部研究室 田中 歌子
PROPERTIES OF TRAPPED Ca+ IONS
electrostatic ion beam trap
Ion-trap quantum computation Summer School of CQIQC 2012 Laser Lab Prof. Vasant Natarajan Department of Physics Indian Institute of Science Bangalore May.
Laser System for Atom Interferometry Andrew Chew.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Generation of short pulses
Quantum Computing with Trapped Ion Hyperfine Qubits.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Testing the Penning trap (operated as a Paul trap)
A Magneto-Optical Trap for Strontium James Millen A Magneto-Optical Trap for Strontium – Group meeting 29/09/08.
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!

Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Rydberg & plasma physics using ultra-cold strontium James Millen Supervisor: Dr. M.P.A. Jones Rydberg & plasma physics using ultra-cold strontium.
Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
ArXiv: Optical pulse-shaping for internal cooling of molecules Optical pulse-shaping for internal cooling of molecules Chien-Yu Lien, Scott Williams,
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.
Instrumentation in the Molecular Physics Group Presented by: Mats Larsson.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
THE ZEEMAN EFFECT IN THE OPTICAL SPECTRUM OF MANGANESE MONOHYDRIDE: MnH. Jamie Gengler and Timothy C. Steimle Department of Chemistry and Biochemistry.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
Threshold ionization mass spectroscopy of radicals in RF silane discharge Progress report 11/19/2003 Contributors: Alan Gallagher Peter Horvath Karoly.
Ultrafast Terahertz Kerr Effect Spectroscopy: Detection of Intramolecular Vibrational Coherences Marco Allodi, Ian Finneran, Geoffrey Blake California.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Laser Cooling Molecules Joe Velasquez, III*, Peter L. Walstrom †, and Michael D. Di Rosa* * Chemistry Division, Physical Chemistry and Applied Spectroscopy.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Fiber-integrated Point Paul Trap Tony Hyun Kim 1, Peter F. Herskind 1, Tae-Hyun Kim 2, Jungsang Kim 2, Isaac L. Chuang 1 1 Center for Ultracold Atoms,
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Time-Resolved IR and Mass Spectroscopy of Laser-Ablated Magnesium
Beryllium ions in segmented Paul trap
Mid-IR Direct Absorption/Dispersion Spectroscopy of a Fast Ion Beam
Measurement Science Science et étalons
Multiplexed saturation spectroscopy with electro-optic frequency combs
Preparing antihydrogen at rest for the free fall in
Coupled atom-cavity system
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Fiber-coupled Point Paul Trap
SYMPATHETIC SIDEBAND COOLING FOR MOLECULAR SPECTROSCOPY
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Sympathetic Laser Cooling of Molecular Ions to the μK regime C. Ricardo Viteri and Kenneth Brown Georgia Institute of Technology, School of Chemistry and Biochemistry and Computational Science and Engineering Division Atlanta, GA 30332, USA June 17, 2008

Chemistry and Ion Traps Takashi Baba and Izumi Waki Jpn. J. Appl. Phys., 35, L (1996) 24 Mg + + air  NH + 4, H 3 O +, C 2 H 5 +, COH +, N 2 H +, O 2 + (~7 K) o M. Welling, et al., Int. J. Mass Spectrom. Ion Processes, 172, 95 (1998) 24 Mg + + C 60 (collision energies up to 200 eV.) o K. Mølhave and M. Drewsen, Phys. Rev. A, 62, R (1998) Mg + (3p) + H 2 (D 2 )  MgH 2 + (MgD 2 + ) ~ 100 mK o H. A. Schuessler et al., Phys. Rev. A, 74, (2006) 24 Mg + + C 60 (~14 K) It may not be possible to find closed optical pumping cycles to laser cool molecules. Sympathetic cooling has been extensively used to spatially confine molecules making possible to perform many molecular physics experiments.

Chemistry and Ion Traps Future: High resolution spectroscopy State selective studies of chemical reactions Prepare molecules in specific internal quantum state Coherent manipulation of internal and external degrees of freedom Use molecular internal degrees of freedom in an ensemble to perform logic operations (quantum computation processes). More recently: S. Willitsch, M.T. Bell, A. D. Gingell, S.R. Procter, and T.P. Softley, Phys. Rev. Lett., 100, (2008) (115 mK) A. Ostendorff et al., Phys. Rev. Lett., 97, (2006)

Doppler (mK) and Sideband Cooling (  K) + + CM  z- : BM  z+ : To achieve Doppler limit, minimize micromotion using DC bias on rods to compensate the trap, see: D. J. Berkeland, et al., Journal of Applied Physics, 83, 5025 (1998) Hence, potential energy of two ions Coulomb crystal: At T D the expected quantum of vibrational motion, Cooling beyond Doppler limit Raman type transitions to cool crystal to

Ion trap D. J. Berkeland, Review of Scientific Instruments, 73, 2856 (2002) R = 0.5 mm 2Z 0 = 6 mm U 0 ~100 V V rf ~ V  rf = MHz U 1, U 2, U 3, U 4 ~-100 mV Stainless Steel Macor Polyimide

Ion trap McMaster-Carr GTRI Machine shop Kimball Physics

Ca oven e-gun z y x leak valve Ion trap

Ca + Laser system Ions loaded by optically selected photoionization of neutral 40 Ca: 1 S 0 – 1 P 1 : 423nm (TOPTICA) 1 P 1 – above threshold: 375 nm (NICHIA) 40 Ca + D 3/2 S 1/2 P 1/2 Doppler Cooling 397 nm (7.7 ns) (1.08 s) (94.3 ns) High Power Frequency Doubled Tunable Diode Laser: 397nm tunable diode laser tapered amp. AOM SHG 866 nm Grating Stabilized Diode Laser: 866 nm All lasers used to cool 40 Ca + are commercially available (TOPTICA) 1S01S0 1P11P1 423 nm 40 Ca 375 nm

Ca + Laser system D 3/2 397 nm 866 nm S 1/2 P 1/2 40 Ca + Sideband Cooling Grating Stabilized Diode Laser: 854 nm Diode laser system narrowed by fast electronics: 729 nm Home made Fabry-Perot cavity to lock laser frequency Finesse ~200 Linewidth ~15KHz grating stabilized diode laser 729 nm (1.045 s) D 5/2 P 3/2 854 nm (101 ns) (7.4 ns) AOM Invar cavity

729 nm (1.045 s) D 5/2 P 3/2 854 nm (101 ns) (7.4 ns) Ca + Laser system D 3/2 S 1/2 P 1/2 40 Ca + Sideband Cooling Grating Stabilized Diode Laser: 854 nm Diode laser system narrowed by fast electronics: 729 nm ULE temperature stabilized high finesse cavity in vacuum Finesse > 100K grating stabilized diode laser AOM

Ion Trap Table Lens system M = 5.4x Vacuum chamber at 5.5x torr Magnetic field: 3-6 G along x-axis RF amplitude ~ V at MHz z y x z y x Helmholtz coil 866 & 854 nm 397 nm 423 nm 729 nm leak valve ion pump CCD camera PMT helical resonator

Doppler Cooling 40 Ca + D 3/2 397 nm 866 nm S 1/2 P 1/2 40 Ca + T D ~ 570  K 160  m  rf =14.13 MHz V rf = 134 V U 0 = 95 V I 397 = 230  W I 866 = 550  W Compensation voltages: U 1 = -100 mV U 2 = -100 mV U 3 = -320 mV U 4 = -135 mV  = 22 MHz 80  m

Reaction of O 2 with 40 Ca + at mK Load two 40 Ca + ions 71  m 59  m D 3/2 397 nm 866 nm S 1/2 P 1/2 40 Ca + Tickle U 3 rod: mV pp to measure radial secular frequency,  r /2  amu x 1216 kHz kHz m = = 56.2 amu CaO + Open leak valve, pressure 5x10 -9 torr Wait ~ 5 min.

Ions are separated by 27.2  m. Expected axial secular frequency:  z1 = 115 KHz M. Drewsen, et al. PRL, 93, (2004) CM  z- = 104 KHz BM  z+ = 185 KHz 40 Ca Ca 16 O + D 3/2 397 nm 866 nm S 1/2 P 1/2 40 Ca + Tickle 2 of the U 0 end caps: 4-6 V pp to measure axial secular frequency,  z /2  Reaction of O 2 with 40 Ca + at mK 40 Ca Ca 16 O + 71  m 59  m 40 Ca Ca +  z- = 104 KHz  z1 = 115 KHz

Sideband Cooling Spin Polarization (Optical Pumping Zeeman levels) m = 1/2 S 1/2 m = -1/2 m = -3/2 m = -5/2 D 5/2 P 3/2 m = -1/2 m = -3/2 729 nm 854 nm Remove quanta of vibration (Anti-Stokes transition on two-ions system) 729 nm 854 nm n n -1 S 1/2 m = -1/2 n -1 n Ca + -Ca +  z1 = 115 KHz Ca + -CaO +  z- = 104 KHz P 3/2 m = -3/2 D 5/2 m = -5/2 Zeeman components ~25 MHz (B = 3G) m’ = -1/2 m = 3/2 m’ = -1/2 m = -5/2 S 1/2 D 5/2  z ~100 kHz  rf =14.13 MHz 729 frequency

Sideband Cooling and Temperature Measurement D 3/2 S 1/2 P 1/2 729 nm D 5/2 P 3/2 397 nm 866 nm 854 nm Cycle repeated 100 times for each  729 (10 KHz/step). Optimum time pulse widths from Rabi oscillations  Rabi ~ 50 KHz   t Zl,  t sb ~  s DDS boards RF amps, FPGA, attenuators

Sideband Cooling and Temperature Measurement D 3/2 S 1/2 P 1/2 88 Sr nm D 5/2 P 3/2 422 nm 1092 nm 1033 nm J. Labaziewicz, et al. PRL, 100, (2008) Heating rates in cryogenic surface-electrode ion traps using 88 Sr +

Conclusions 80  m We have built a linear Paul trap to perform single ion/molecule reactions at low temperatures (< mK) Single 40 Ca + ions are laser cooled close to Doppler limit ( T D ~ 570  K) Laser excitation schemes to cool the 40 Ca Ca 16 O + crystal to its vibrational ground state (T < 100  K) We observe the product of the reaction of O 2 with single 40 Ca + ions at mK by measuring vibrational excitation frequencies of the atom-molecule crystal

Acknowledgments Professor Kenneth Brown Dr. Richart Slusher Director of GT-Quantum Institute GTRI Machine Shop Start-up funds Ion trap construction & vacuum: James Goeders Electronics: Yatis Dodia, Grahame Vittorini, Claire Tornow, Jamie Hodges High finesse cavity: Grahame Vittorini, James Goeders 729 lock: Ken Wright Lasers & optics: Claire Tornow, Craig Clark Data acquisition: Craig Clark 12 Dec. 2007