Ekaterina Laskin, Sean T. Nicolson, Sorin P. Voinigescu

Slides:



Advertisements
Similar presentations
Ischia, giugno 2006Riunione Annuale GE 2006 Università di Catania Facoltà di Ingegneria DIEES Catania - ITALY STMicroelectronics Catania site Low-Phase-Noise.
Advertisements

6-k 43-Gb/s Differential Transimpedance-Limiting Amplifiers with Auto-zero Feedback and High Dynamic Range H. Tran 1, F. Pera 2, D.S. McPherson 1, D. Viorel.
Design and Scaling of SiGe BiCMOS VCOs Above 100GHz
CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
Hardware Design of a 1 GHz Amplifier and Initial Comparison with SimRF Application Note K. Wang, R. Ludwig, S. Bitar, S. Makarov Aug 21, 2011.
T. Chalvatzis, University of Toronto - ESSCIRC Outline Motivation Decision Circuit Design Measurement Results Summary.
Design and Application of Power Optimized High-Speed CMOS Frequency Dividers.
1 A Low Power CMOS Low Noise Amplifier for Ultra-wideband Wireless Applications 指導教授 : 林志明 學生 : 黃世一
RMO4C-2 A Low-Noise 40-GS/s Continuous-Time Bandpass ΔΣ ADC Centered at 2 GHz Theo Chalvatzis and Sorin P. Voinigescu The Edward S. Rogers Sr. Department.
1/42 Changkun Park Title Dual mode RF CMOS Power Amplifier with transformer for polar transmitters March. 26, 2007 Changkun Park Wave Embedded Integrated.
Center for Wireless Communications 1 ©Deng, Larson and Gudem, May 16th, 2003 PA Workshop High Efficiency SiGe BiCMOS WCDMA Power Amplifiers With Dynamic.
Built-In Self-Test for Radio Frequency System-On-Chip Bruce Kim The University of Alabama.
A Zero-IF 60GHz Transceiver in 65nm CMOS with > 3.5Gb/s Links
The Development of Psec-Resolution TDC for Large Area TOF Systems Fukun Tang Enrico Fermi Institute University of Chicago With Karen Byrum and Gary Drake.
Low Power RF/Analog Amplifier Design Tong Zhang Auburn University Tong Zhang Auburn University.
An Integrated Solution for Suppressing WLAN Signals in UWB Receivers LI BO.
Brief Introduction of High-Speed Circuits for Optical Communication Systems Zheng Wang Instructor: Dr. Liu.
60-GHz PA and LNA in 90-nm RF-CMOS
University of Toronto (TH2B - 01) 65-GHz Doppler Sensor with On-Chip Antenna in 0.18µm SiGe BiCMOS Terry Yao, Lamia Tchoketch-Kebir, Olga Yuryevich, Michael.
Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &
A 77-79GHz Doppler Radar Transceiver in Silicon
Experimental results obtained from a 1.6 GHz CMOS Quadrature Output PLL with on-chip DC-DC Converter Owen Casha Department of Micro & Nanoelectronics University.
CSICS 26 Oct A 49-Gb/s, 7-Tap Transversal Filter in 0.18  m SiGe BiCMOS for Backplane Equalization Altan Hazneci and Sorin Voinigescu Edward S.
1 姓名 : 李國彰 指導教授 : 林志明老師 A 1v 2.4GHz CMOS POWER AMPLIFIER WITH INTEGRATED DIODE LINEARIZER ( The 2004 IEEE Asia-Pacific Conference on Circuits and Systems,
Design of LNA at 2.4 GHz Using 0.25 µm Technology
New MMIC-based Millimeter-wave Power Source Chau-Ching Chiong, Ping-Chen Huang, Yuh-Jing Huang, Ming-Tang Chen (ASIAA), Shou-Hsien Weng, Ho-Yeh Chang (NCUEE),
An Ultra-Wide-Band GHz LNA in 0.18µm CMOS technology RF Communication Systems-on-chip Spring 2007.
1HSSPG Georgia Tech High Speed Image Acquisition System for Focal-Plane-Arrays Doctoral Dissertation Presentation by Youngjoong Joo School of Electrical.
Design of a GHz Low-Voltage, Low-Power CMOS Low-Noise Amplifier for Ultra-wideband Receivers Microwave Conference Proceedings, APMC 2005.
A Fast-Hopping Single-PLL 3-Band MB-OFDM UWB Synthesizer Remco C. H. van de Beek, Member, IEEE, Domine M. W. Leenaerts, Fellow, IEEE, and Gerard van der.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
S. -L. Jang, Senior Member, IEEE, S. -H. Huang, C. -F. Lee, and M. -H
Microwave Traveling Wave Amplifiers and Distributed Oscillators ICs in Industry Standard Silicon CMOS Kalyan Bhattacharyya Supervisors: Drs. J. Mukherjee.
October 31st, 2005CSICS Presentation1 A 1-Tap 40-Gbps Decision Feedback Equalizer in a  m SiGe BiCMOS Technology Adesh Garg, Anthony Chan Carusone.
High-Speed Track-and-Hold Circuit Design October 17th, 2012 Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne)
MSICT – RF Communication SoC POWER OPTIMIZED LC VCO & MIXER CO-DESIGN Daniel Götz, Milosz Sroka June 20th, 2006.
A 1.5-V 6-10-GHz Low LO-Power Broadband CMOS Folded-Mirror Mixer for UWB Radio H.-W. Chung, H.-C. Kuo, and H.-R. Chuang Institute of Computer and Communication.
A High-Gain, Low-Noise, +6dBm PA in 90nm CMOS for 60-GHz Radio
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
A 2-GHz Direct Sampling ΔΣ Tunable Receiver with 40-GHz Sampling Clock and on-chip PLL T. Chalvatzis 1, T. O. Dickson 1,2 and S. P. Voinigescu 1 1 University.
A Low-Jitter 8-to-10GHz Distributed DLL for Multiple-Phase Clock Generation Keng-Jan Hsiao and Tai-Cheng Lee National Taiwan University Taipei, Taiwan.
A GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering.
Phan Tuan Anh Dec Reconfigurable Multiband Multimode LNA for LTE/GSM, WiMAX, and IEEE a/b/g/n 17 th IEEE ICECS 2010, Athens, Greece.
First time common synthesis and simulation of ECL and CMOS parts at a BiCMOS chip based on the IHP SGB25V Library Frank Winkler, Humboldt University of.
A 30 GS/s 4-Bit Binary Weighted DAC in SiGe BiCMOS Technology
An Oscillator Design Based on Bi-CMOS Differential Amplifier Using Standard SiGe Process Cher-Shiung Tsai, Ming-Hsin Lin, Ping-Feng Wu, Chang-Yu Li, Yu-Nan.
A Tail Current-Shaping Technique to Reduce Phase Noise in LC VCOs 指導教授 : 林志明 教授 學 生 : 劉彥均 IEEE 2005CUSTOM INTEGRATED CIRCUITS CONFERENCE Babak Soltanian.
Jinna Yan Nanyang Technological University Singapore
Tod Dickson University of Toronto June 9, 2005
1 Low-Voltage BiCMOS Circuits for High-Speed Data Links up to 80 Gb/s Tod Dickson University of Toronto June 24, 2005.
Final Design Review of a 1 GHz LNA / Down-Converter Charles Baylis University of South Florida April 22, 2005.
© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson 1, Keith A. Tang 1, Kenneth H.K. Yau 1, Pascal.
Ph.D. Candidate: Yunlei Li Advisor: Jin Liu 9/10/03
Alternating Current (AC)
Timothy O. Dickson and Sorin P. Voinigescu Edward S. Rogers, Sr. Dept of Electrical and Computer Engineering University of Toronto CSICS November 15, 2006.
A 20/30 Gbps CMOS Backplane Driver with Digital Pre-emphasis Paul Westergaard, Timothy Dickson, and Sorin Voinigescu University of Toronto Canada.
3-Stage Low Noise Amplifier Design at 12Ghz
A 3-V Fully Differential Distributed Limiting Driver for 40 Gb/s Optical Transmission Systems D.S. McPherson, F. Pera, M. Tazlauanu, S.P. Voinigescu Quake.
BARC-IIFC collaboration meet RF Solid-state Power Amplifiers at 325 MHz RFSS, TPD, BARC.
Full Wave Rectifier Circuit with Working Theory
Ultra-low Power Components
Fabrication and application of MOS-HBTNDR
4th International Conference on Materials for Advanced Technologies, Singapore July 1-6, 2007 New Negative Differential Resistance Device Design Suitable.
Chien-Feng Lee, Sheng-Lyang Jang, Senior Member, IEEE, and M. -H
A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique Microwave and Wireless Components Letters, IEEE Volume 17,  Issue.
A 13.5-mW 5-GHz Frequency Synthesizer With Dynamic Divider
TU3E-4 A K-band Low Phase-Noise High-Gain Gm Boosted Colpitts VCO for GHz FMCW Radar applications R. Levinger, O. Katz, J. Vovnoboy, R. Ben-Yishay.
A Large Swing, 40-Gb/s SiGe BiCMOS Driver with Adjustable Pre-Emphasis for Data Transmission over 75W Coaxial Cable Ricardo A. Aroca & Sorin P. Voinigescu.
A near–quantum-limited Josephson traveling-wave parametric amplifier
Presentation transcript:

Low-Power, Low-Phase Noise SiGe HBT Static Frequency Divider Topologies up to 100 GHz Ekaterina Laskin, Sean T. Nicolson, Sorin P. Voinigescu University of Toronto, Canada Pascal Chevalier, Alain Chantre, Bernard Sautreuil, STMicroelectronics, France

Outline Motivation Static divider topology Fabrication technologies Test setup and results Conclusion 10 October 2006 Paper Number 12.3

Motivation Applications at 80 GHz: Phase-locked loop Radio circuits Comparison of divider topologies Technology benchmark 10 October 2006 Paper Number 12.3

Static Divider Topology On-chip transformer and matching Toggle flip-flop, 50 Ω output buffer 2 different latch designs implemented 10 October 2006 Paper Number 12.3

Integrated Transformer primary 30µm secondary Stacked design, top 2 metals over substrate 30µm square, 1µm spacing, 2µm metal width 10 October 2006 Paper Number 12.3

Transformer Model primary k secondary substrate model Model extracted from geometry using ASITIC π - network includes substrate model k = 0.855 is achieved 10 October 2006 Paper Number 12.3

Input Network Simulation Divider input matched 40 – 100 GHz Transformer operational up to 100 GHz 10 October 2006 Paper Number 12.3

Latch Design 1 – w/o input EF ECL latch Inductive peaking No split load Self-biased Resistive input biasing 10 October 2006 Paper Number 12.3

Latch Design 2 – with input EF Double-EF input buffer 10 October 2006 Paper Number 12.3

Implementation Both dividers fabricated in 2 SiGe processes: BiCMOS9 0.1 1 10 50 100 150 200 250 300 J C (mA/ m 2 ) f T MAX 0.1 1 10 50 100 150 200 250 300 J C (mA/ m 2 ) f T MAX BiCMOS9 BipX 10 October 2006 Paper Number 12.3

Fabricated Dividers with input EF w/out input EF BiCMOS9 BipX 10 October 2006 Paper Number 12.3

Fabricated Dividers with input EF w/out input EF BiCMOS9 BipX 10 October 2006 Paper Number 12.3

Fabricated Dividers with input EF w/out input EF BiCMOS9 BipX 10 October 2006 Paper Number 12.3

Fabricated Dividers with input EF w/out input EF BiCMOS9 BipX 10 October 2006 Paper Number 12.3

Fabricated Dividers with input EF w/out input EF BiCMOS9 BipX 515μm × 473μm 3.3 V 145 mW 502μm × 360μm 3.3 V 122 mW 10 October 2006 Paper Number 12.3

Test Setup 0 - 50 GHz: 50 - 75 GHz: 75 - 100 GHz: 10 October 2006 Paper Number 12.3

Measurement Results Divider self-oscillation frequency: BipX1 BipX2 40 45 50 55 60 65 70 75 80 220 240 260 280 300 Process f MAX (GHz) Divider SOF (GHz) Divider with EF Divider w/out EF BipX BiCMOS9 BipX1 BipX2 10 October 2006 Paper Number 12.3

Sensitivity Curves 25 °C BipX, w/o EF BipX, w/ EF BiCMOS9, w/o EF -50 -40 -30 -20 -10 10 20 30 40 50 60 70 80 90 100 Input Frequency [GHz] Input Power [dBm] BipX, w/o EF BipX, w/ EF BiCMOS9, w/o EF BiCMOS9, w/ EF 25 °C 10 October 2006 Paper Number 12.3

Sensitivity Curves 25 °C 50 °C 100 °C Input Power [dBm] -50 -40 -30 -20 -10 10 20 30 40 50 60 70 80 90 100 Input Frequency [GHz] Input Power [dBm] 25 °C 50 °C 100 °C 10 October 2006 Paper Number 12.3

Divider Phase Noise Input Output 100 GHz -90.4 dBc/Hz @ 100 kHz offset Phase noise -6 dB with frequency halving 10 October 2006 Paper Number 12.3

Further Improvements MOS-HBT HBT only BiCMOS9, HBT only 20 -50 -40 -30 MOS-HBT 10 -10 Input Power [dBm] HBT only -20 BiCMOS9, HBT only BiCMOS9, MOS-HBT BipX, HBT only 10 20 30 40 50 60 70 80 90 100 Input Frequency [GHz] 10 October 2006 Paper Number 12.3

Comparison to Previous Work [6] [5] [9] [7] [8] [2] This Work 30 40 50 60 70 80 90 100 200 300 400 500 Technology fT [GHz] Divider SOF [GHz] InP CMOS SiGe 10 October 2006 Paper Number 12.3

Conclusion 2 SiGe static dividers designed and analyzed in 2 technologies Designed divider operates up to 100 GHz Features an integrated transformer operating at 100 GHz Ideal phase noise behaviour Low power 10 October 2006 Paper Number 12.3

Thank You 10 October 2006 Paper Number 12.3

Back-up Slides 10 October 2006 Paper Number 12.3

50-Ω Output Buffer 10 October 2006 Paper Number 12.3

BipX Process Splits BipX2 BipX1 I (mA) f I (mA) f 0.1 1 10 50 100 150 50 100 150 200 250 300 I C (mA) f MAX T 0.1 1 10 50 100 150 200 250 300 I C (mA) f MAX T BipX2 BipX1 10 October 2006 Paper Number 12.3

Measurement Results Divider self-oscillation frequency: BiCMOS9 BipX 40 45 50 55 60 65 70 75 80 170 190 210 230 250 270 Process f T (GHz) Divider SOF (GHz) Divider with EF Divider w/out EF BiCMOS9 BipX BipX2 BipX1 10 October 2006 Paper Number 12.3

Measurement Results with input EF w/out input EF BiCMOS9 avg= 45.9 GHz s.dev.= 1.54 GHz BipX avg= 65.02 GHz avg= 72.43 GHz s.dev.= 2.06 GHz 10 October 2006 Paper Number 12.3

Source Phase Noise @ 100GHz 10 October 2006 Paper Number 12.3

BiCMOS Divider 10 October 2006 Paper Number 12.3