Types of Semiconductor Detectors

Slides:



Advertisements
Similar presentations
Chapter 9. PN-junction diodes: Applications
Advertisements

CHAPTER 4 CONDUCTION IN SEMICONDUCTORS
Semiconductor Device Physics
Lecture #5 OUTLINE Intrinsic Fermi level Determination of E F Degenerately doped semiconductor Carrier properties Carrier drift Read: Sections 2.5, 3.1.
ECE G201: Introductory Material Goal: to give you a quick, intuitive concept of how semiconductors, diodes, BJTs and MOSFETs work –as a review of electronics.
LECTURE- 5 CONTENTS  PHOTOCONDUCTING MATERIALS  CONSTRUCTION OF PHOTOCONDUCTING MATERIALS  APPLICATIONS OF PHOTOCONDUCTING MATERIALS.
EP 311 PHYSICS OF SEMICONDUCTOR DEVICES
Semiconductor Device Physics Lecture 3 Dr. Gaurav Trivedi, EEE Department, IIT Guwahati.
Semiconductor Device Physics
Semiconductor Photoconductive Detectors S W McKnight and C A DiMarzio.
Optoelectronic Devices (brief introduction)
ECE 4339: Physical Principles of Solid State Devices
Integrated Circuit Devices
Semiconductor Light Detectors ISAT 300 Foundations of Instrumentation and Measurement D. J. Lawrence Spring 1999.
Lecture #6 OUTLINE Carrier scattering mechanisms Drift current
Chapter 2 Motion and Recombination
1 Detectors RIT Course Number Lecture Single Element Detectors.
EE580 – Solar Cells Todd J. Kaiser Lecture 05 P-N Junction 1Montana State University: Solar Cells Lecture 5: P-N Junction.
Lecture 3. Intrinsic Semiconductor When a bond breaks, an electron and a hole are produced: n 0 = p 0 (electron & hole concentration) Also:n 0 p 0 = n.
Lesson 23: Introduction to Solar Energy and Photo Cells ET 332a Dc Motors, Generators and Energy Conversion Devices 1Lesson a.pptx.
I. ELECTRICAL CONDUCTION
 “o” subscript denotes the equilibrium carrier concentration. Ideal diode equation.
Lecture 25: Semiconductors
Higher Physics Semiconductor Diodes. Light Emitting Diode 1  An LED is a forward biased diode  When a current flows, electron-hole pairs combine at.
Venugopala Rao Dept of CSE SSE, Mukka Electronic Circuits 10CS32.
ECE 340 Lecture 27 P-N diode capacitance
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze: Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS Detection.
1 Semiconductor Detectors  It may be that when this class is taught 10 years on, we may only study semiconductor detectors  In general, silicon provides.
Lecture 5.0 Properties of Semiconductors. Importance to Silicon Chips Size of devices –Doping thickness/size –Depletion Zone Size –Electron Tunneling.
Drift and Diffusion Current
Potential vs. Kinetic Energy
ECE 250 – Electronic Devices 1 ECE 250 Electronic Device Modeling.
Basic Fundamentals of Solar Cell Semiconductor Physics for High School Level Physics.
NEEP 541 Ionization in Semiconductors - II Fall 2002 Jake Blanchard.
Lecture 4 OUTLINE Semiconductor Fundamentals (cont’d)
ENE 311 Lecture 9.
EXAMPLE 12.1 OBJECTIVE Solution Comment
SILICON DETECTORS PART I Characteristics on semiconductors.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS.
ECEE 302: Electronic Devices
ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors.
1 Detectors RIT Course Number Lecture N: Lecture Title.
Region of possible oscillations
Conductors – many electrons free to move
1 Stephen SchultzFiber Optics Fall 2005 Semiconductor Optical Detectors.
1 Higher Physics Unit 3 Optoelectronics Semiconductors.
President UniversityErwin SitompulSDP 4/1 Lecture 4 Semiconductor Device Physics Dr.-Ing. Erwin Sitompul President University
CHAPTER ONE SEMICONDUCTORS Copyright, 2006 © Ahmed S. Bouazzi 2e A G.I. Module Energie Solaire المدرسة الوطنية للمهندسين بتونس.
Title Light Detectors. Characteristics  Sensitivity  Accuracy  Spectral Relative Response(R( ))  Absolute Sensitivity(S( ))  Signal-to-noise ratio.
Introduction to Semiconductor Technology. Outline 3 Energy Bands and Charge Carriers in Semiconductors.
ELECTRONICS II VLSI DESIGN Fall 2013
Photodetectors What is photodetector (PD)? Photodetector properties
Photodetectors. Principle of the p-n junction Photodiode  Schematic diagram of a reverse biased p-n junction photodiode SiO 2 Electrode  net –eN.
P-N Junction Effects and Other Detectors S W McKnight and C A DiMarzio.
Optoelectronics.
Problems All problems up to p.28 Q 4 can be done.
Solar Cell Semiconductor Physics
Photovoltaic effect and cell principles. 1. Light absorption in materials and excess carrier generation Photon energy h = hc/ (h is the Planck constant)
Semiconductor Device Physics
Slide 1EE40 Fall 2007Prof. Chang-Hasnain EE40 Lecture 32 Prof. Chang-Hasnain 11/21/07 Reading: Supplementary Reader.
President UniversityErwin SitompulSDP 3/1 Dr.-Ing. Erwin Sitompul President University Lecture 3 Semiconductor Device Physics
Issued: May 5, 2010 Due: May 12, 2010 (at the start of class) Suggested reading: Kasap, Chapter 5, Sections Problems: Stanford University MatSci.
월 19 일 중간고사 1: 6:00 – 8:00 pm. 2 3 Hybridization of s- and p-states Two s+p bands, lower filled higher empty for Ge, Si Group IV 8.1 Band Structure.
Bandgap (eV) Lattice Constant (Å) Wavelength ( ㎛ ) GaN AlN InN 6H-SiC ZnO AlP GaP AlAs.
Band Theory of Electronic Structure in Solids
Intro to Semiconductors and p-n junction devices
Application of photodiodes
More Applications of PN Junction
Photo Detectors.
Chapter 1 – Semiconductor Devices – Part 2
Presentation transcript:

Types of Semiconductor Detectors S W McKnight and C A DiMarzio

Outline Bolometers Photoconductive detectors Photovoltaic detectors

Bolometers Cryogenically cooled ~ 4.2 K Incident Radiation Absorbing film Semiconductor Bolometer Electric leads/ Heat sinks Cryogenically cooled ~ 4.2 K

Semiconductor Bolometer k Ef Eb Impurity level Binding Energy (Eb) ~ 50 meV

Effect of ΔT on Si Bolometer Conductivity Ambient temperature = 4.2K → kT=0.362 meV Temperature = 4.3K → kT=0.371 meV

Photoconductive Detectors k Eg

Conductivity Conductivity: σ = n e μ Material μn (cm2/V-s) μp e=electron charge (1.6x10-19 C) =Electron scattering time (average time between scattering events) Mobility: Material μn (cm2/V-s) μp (cm2/V-s) Si 1350 480 CdS 250 15 GaAs 8500 400 InSb 100,000 1700 GaAs (77K) 200,000 10,000

Photoconductivity Dark current: σd = no e μn + po e μp Photocurrent: σph = Δn e μn + Δp e μp Δn = Δp = photo-induced carrier density (m-3) = Nph η / V Nph = incident photon flux (s-1) η = quantum efficiency = carrier recombination time V = sample volume

Photoconductivity Recombination in n-type material: Steady-state solution: Quantum efficiency: η = (1-R) Pe-h Pe-h = probability of absorption creating electron-hole pair

Photoconductors Material Eg (max) Si 1.1eV(i) (1.2μ) PbS GaAs 1.43eV (0.87μ) InSb 0.18eV (6.9μ) Ge 0.67eV(i) (1.8μ) PbTe 0.29eV (4.3μ) CdS 2.42eV (0.51μ) Hg0.3Cd0.7Te 0.24eV (5.2μ) (77K) CdTe 1.58eV (0.78μ) Hg0.2Cd0.8 Te 0.083eV (15μ) (77K)

HgxCd1-xTe Band Gap Eg=-0.302+1.93x+ 5.35x10-4 T(1-2x) -0.810x2 + 0.823x3 Eg= -0.26eV Eg= 1.6eV HgTe “Zero-gap” (inverted bands) CdTe

Photovoltaic Detectors P-N junction detector Incident light creates voltage Same mechanism as solar cell

P-N Junction E Ef Eg Ef x Donor Levels electrons “holes” Acceptor Levels x Doped Semiconductor (p-type) Doped Semiconductor (n-type)

P-N Junction - + E electrons “holes” Ef x

P-N Junction E + - electrons Ef “holes” x Depletion Region

P-N Junction E Ec electrons Ef “holes” Ev - + x Depletion Region

P-N Junction Currents - + Jdiffusion Jdrift Vo E Ec Junction “built-in” voltage Vo Ef Ev - + x Depletion Region

P-N Junction Currents N-doped material: n≈Nd (# of donors)

P-N Junction Currents (No Bias Voltage) Jdrift = A np = -Jo Jdiffusion = B e-Vo/kT JTotal = -Jo + B e-Vo/kT = 0 (equilibrium) → B= Jo e+Vo/kT

Biased P-N Junction Jdiffusion Jdrift Vo-Va Va Va E Ec Ef Ev x Depletion Region Va x

P-N Junction Currents (Bias Voltage=Va) Jdrift = A np = Jo Jdiffusion = B e-(Vo-Va)/kT JTotal = -Jo + B e-(Vo-Va)/kT B= Jo e+Vo/kT → JTotal = Jo (eVa/kT -1 )

P-N Junction Current - + IJunction VJunction V (volts) -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 -0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 V a (volts) Junction Current (Amps) IJunction Io=A Jo = 0.005 A - + VJunction

Photovoltaic Detection Jdiffusion E Jdrift Ec Junction “built-in” voltage Vo Ef Ev - + Depletion Region x

Photovoltaic Detection Absorption in depletion region creates electrons/hole pairs Built in electric field accelerates electrons and holes toward neutral region Photocurrent adds Iph= η e Nph to drift current

P-N Junction Photocurrent 0.06 Io=A Jo = 0.005 A 0.04 Iph=A Jph = 0.02 A Junction Current (Amps) 0.02 -0.02 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 V (volts) a

Photovoltaic Sensing Circuit + Vph -

Photoconductive Sensing Circuit Iph - + Vd

Photoconductive Detection Jdrift Ec Vo+ Vd Ev Ef - + Depletion Region x

Avalanche Photodetection Jdrift Ec Vo+ Vd Ev Ef Depletion Region x

Avalanche Photodiode Large reverse bias on junction Photoelectrons create electron/hole pairs in depletion region Electron and holes can create more electron/hole pairs Device has gain (like PMT)