How to easily simulate a photodetector response ? instrumentation examples1 It’s easy, in fact… it is a hierarchical problem related to Markov chains.

Slides:



Advertisements
Similar presentations
Characterization of Geiger Mode Avalanche Photodiodes
Advertisements

Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
Beam-based Measurements of HOMs in the HTC Adam Bartnik for ERL Team, Daniel Hall, John Dobbins, Mike Billing, Matthias Liepe, Ivan Bazarov.
Photodetector Timing Resolution Burle Micro-Channel Plate Photo Multiplier Tubes (MCP-PMTs) H. Wells Wulsin SLAC Group B Winter 2005.
Olin Student Projects 2008 Keith Gendreau Code 662 NASA/GSFC
Fiber-Optic Communications
The UC Simulation of Picosecond Detectors Pico-Sec Timing Hardware Workshop November 18, 2005 Timothy Credo.
Characterization of Silicon Photodetectors (Avalanche Photodiodes in Geiger Mode) S. Cihangir, G. Mavromanolakis, A. Para. N.Saoulidou.
CUÑADO, Jeaneth T. GEQUINTO, Leah Jane P. MANGARING, Meleria S.
6mm 【 Development of Readout Electronics for MPPC 】 We report the read out electronics of MPPC( Multi-Pixel Photon Counter ). MPPC is a new photodetector.
1 First Look at the Hamamatsu MPPC Adam Para, Fermilab Research Techniques Seminar, November 8, 2007.
Operational amplifier applications
GLD Calorimeter Status Oct 学術創成会議 S. Uozumi Shinshu University FJPPL meeting held at the end of September. Preparation underway toward the ECAL.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
SiPM: Development and Applications
A Large Surface Photomultiplier based on SiPM Carlos Maximiliano Mollo, INFN Naples, Italy Dr. Carlos M. Mollo - A Large Surface Photomultiplier based.
Uncertainty in light measurement instrumentation examples1 For light sensors, uncertainty is closely related to light intensity … but not only… Let’s have.
MPPC update including plastic connector T2K experiment collaboration meeting 2007/4/18 (Wed) S.Gomi T.Nakaya M.Yokoyama ( Kyoto University ) T.Nakadaira.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group May 29 – Jun 4 DESY Introduction.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
1 MPPC update S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira (KEK) Nov KEK.
Electrons capture in the air instrumentation examples1 The subject: Medical Ionization Chambers are air filled ICs In the air, electrons are captured by.
1 A.Tsirigotus Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch The NESTOR O.M.
A complete DIY numerical shaper… … from scratch! instrumentation examples1 What do we need? The signal digitized at the output of a Charge Sensing Preamp.
Jan 2004 Chuck DiMarzio, Northeastern University b-1 ECEG287 Optical Detection Course Notes Part 3: Noise and Photon Detection Profs. Charles A.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
N/  discrimination instrumentation examples1 The problem… Particles beam Active taget Scintillator neutron  activation decay time Concrete wall activation.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
1 SiPM studies: Highlighting current equipment and immediate plans Lee BLM Quasar working group.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
28 June 2007G. Pauletta: ALCPG Tests of IRST SiPMs G. Pauletta Univ. & I.N.F.N. Udine Outline 1.IRST SiPMs : baseline characteristics 2.first application.
Optical Receivers Theory and Operation
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Performance of new MPPC Nov. 21 Korea-Japan joint meeting Takashi Maeda Hideki Yamazaki Yuji Sudo (University of Tsukuba) --- Contents ---
Jean-François Genat Fast Timing Workshop June 8-10th 2015 FZU Prague Timing Methods with Fast Integrated Technologies 1.
MuTr Chamber properties K.Shoji Kyoto Univ.. Measurement of MuTr raw signal Use oscilloscope & LabView Read 1 strip HV 1850V Gas mixture Ar:CO 2 :CF 4.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
A. Tsirigotis Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Reconstruction, Background Rejection Tools.
The VSiPMT: A new Generation of Photons Detectors G. Barbarino 1,2, F. C. T. Barbato 1,2, R. de Asmundis 2, G. De Rosa 1,2, F. Di Capua 1, P. Migliozzi.
Super-IFR Detector R&D summary Wander Baldini Ferrara, Padova, Roma1 INFN and University on behalf of the superB-IFR group: Ferrara, Padova, Roma1 INFN.
Update on works with SiPMs at Pisa Matteo Morrocchi.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
M.Teshima (MPP, U-Tokyo) M.Pimenta (LIP) T.Schweizer (MPP)
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
PPAC Jonathan Olson University of Iowa Thesis Defense 8 April 2005.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
February 10, 2009, G-APD Workshop, GSI Darmstadt1 APD Laser Test Setup Charles University, Faculty of Mathematics and Physics, Institute of Particle and.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
D. Renker, PSI G-APD Workshop GSI, PAUL SCHERRER INSTITUT Problems in the Development of Geiger- mode Avalanche Photodiodes Dieter Renker Paul Scherrer.
A Temperature Compensated Power Supply for Silicon-Photomultiplier
Development of Multi-Pixel Photon Counters (1)
IFR Detector R&D status
CEPC ScECAL Optimization for the 3th CEPC Physics Software Meeting
Electronics & Communication Engineering
CTA-LST meeting February 2015
Subject Name: Optical Fiber Communication Subject Code: 10EC72
Reward-renewal model of SiPM response to arbitrary waveform optical signals of beam loss monitoring systems S. Vinogradov, L. Devlin, E. Nebot del Busto,
K. Sedlak, A. Stoykov, R. Scheuermann
Comparison of CPTA and Hamamatsu SiPMs
md-NUV PET project meeting
Beam Tests data vs Matlab simulations
CLAS 12 Status of the test bench Calculation of the time resolution
Presentation transcript:

How to easily simulate a photodetector response ? instrumentation examples1 It’s easy, in fact… it is a hierarchical problem related to Markov chains. We will apply the formalism to MPPCs A MPPC is a matrix of small Avalanche Photo-Diodes 2mm

How to easily simulate a photodetector response ? instrumentation examples2 The MPPC 1. “dark count” is about 1Mcps 2. When a pixel triggers it has a probability of say 40% to trigger one of its neighbors 3. The single P.E. response is very sharp 4. When a pixel is triggered, it refills at a given rate say 50ns for instance We will simulate it by using R

How to easily simulate a photodetector response ? instrumentation examples3 1) Create an empty signal and its time dt <- 0.1# ps t <- seq(0, by=dt, length.out=2^18)# time in ns s <- rep(0, length(t))# signal We will perform a FFT later 2^N goes faster !

Dt <- rexp(10000, 1e6)# time intervals (in s) T.det <- cumsum(Dt)*1e9+1000# detection time (in ns) T.det <- T.det[which(T.det < t[length(t)])] How to easily simulate a photodetector response ? instrumentation examples4 2) Create the precursors time interval and detection time

How to easily simulate a photodetector response ? instrumentation examples5 3) Prepare the signal of your single P.E. response PE.resp <- function () rnorm (1, 1, 0.05)

How to easily simulate a photodetector response ? instrumentation examples6 4) For each precursor, prepare the secondaries Nsec <- function () rpois(1, 0.4) For convenience… In fact, it is a bit more complicated…

How to easily simulate a photodetector response ? instrumentation examples7 5) For each precursor and its secondaries, add the single P.E.s responses at right location for (i in 1:length(T.det)) { secondaries <- Nsec () index <- round(T.det[i]/dt) for (j in 1:(1+secondaries)) s[index] <- s[index]+ PE.resp() }

How to easily simulate a photodetector response ? instrumentation examples8 6) Compute the detector current cur <- s * 1.6e-19 * 1e6 / (dt * 1e-9)

How to easily simulate a photodetector response ? instrumentation examples9 7) The final touch, add the detector’s and electronics response Electronics  LPF of time constant 3ns Detector  exponential decay of time constant 50ns el.resp <- 1/3e-9*exp(-t/3) det.resp <- 1/50e-9*exp(-t/50) RESP <- fft(det.resp) * fft(el.resp) resp <- Re(fft(RESP, inverse = TRUE)) / length(t) resp <- resp/sum(resp)

How to easily simulate a photodetector response ? instrumentation examples10 8) Compute the whole response s.f <- 50 * 100 * Re(fft(fft(cur) * fft(resp), inverse = TRUE)) / length(t) plot (t, s.f, type="l", xlab="time (ns)", ylab="amplitude (V)") Electronics  50  load and x100 voltage gain

How to easily simulate a photodetector response ? instrumentation examples11 9) Admire the result 1 P.E. 2 P.E. 3 P.E.

How to easily simulate a photodetector response ? instrumentation examples12 That’s all folks! The model is very simple, we could easily add refinements Better model for secondaries After pulses Noise … Then we would be able to check how this signals enter a given data acquisition system For time measurements Amplitude measurements Dead time…