Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature.

Slides:



Advertisements
Similar presentations
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Advertisements

Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Solid state midterm report Quantum Hall effect g Chienchung Chen.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Andreev Reflection in Quantum Hall Effect Regime H. Takayanagi 髙柳 英明 Tokyo University of Science,Tokyo International Center for Materials NanoArchitechtonics.
Hot Electron Energy Relaxation In AlGaN/GaN Heterostructures 1 School Of Physics And Astronomy, University of Nottingham, University Park, Nottingham,
Electrons in metals Energy E Spatial coordinate x Nucleus with localized core electrons Jellium model: electrons shield potential to a large extent.
CHAPTER 3 Introduction to the Quantum Theory of Solids
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Temperature dependent magnetization and magnetic phases of conduction-band dilute-magnetic-semiconductor quantum wells with non-step-like density of states.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Semiconductors n D*n If T>0
Sinai University Faculty of Engineering Science Department of Basic science 7/14/ W6.
Valencia Bernd Hüttner Folie 1 New Physics on the Femtosecond Time Scale Bernd Hüttner CphysFInstP DLR Stuttgart.
Ballistic and quantum transports in carbon nanotubes.
F. Cheung, A. Samarian, W. Tsang, B. James School of Physics, University of Sydney, NSW 2006, Australia.
Metals: Free Electron Model Physics 355. Free Electron Model Schematic model of metallic crystal, such as Na, Li, K, etc.
Problem 6. Seebeck effect.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 6 Lecture 6: Integrated Circuit Resistors Prof. Niknejad.
Investigation of fluid- fluid phase transition of hydrogen under high pressure and high temperature 2014/11/26 Shimizu laboratory SHO Kawaguchi.
Electron coherence in the presence of magnetic impurities
Tzveta Apostolova Institute for Nuclear Research and Nuclear Energy,
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Hall effect in pinned and sliding states of NbSe 3 A. Sinchenko, R. Chernikov, A. Ivanov MEPhI, Moscow P. Monceau, Th. Crozes Institut Neel, CNRS, Grenoble.
Yibin Xu National Institute for Materials Science, Japan Thermal Conductivity of Amorphous Si and Ge Thin Films.
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Lecture 4 OUTLINE Semiconductor Fundamentals (cont’d)
Magnetic phase transition in YbNi 4 Si. Point-contact spectroscopy of CEF in PrB 6 and NdB /2007 Mariana Vasiľová Outlook: -magnetic phase transition.
Calorimetric Investigation under High Pressure Shimizu-Group M1 Shigeki TANAKA F. Bouquet et al., Solid State Communications 113 (2000)
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
Correlated Electron State in Ce 1-x Yb x CoIn 5 Stabilized by Cooperative Valence Fluctuations Brian M. Maple, University of California, San Diego, DMR.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Section 4: Metallic Bonds and the Properties of Metals
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
J.Vaitkus IWORID6, Glasgow,
Ionic Bonding  Electrons are transferred  Electronegativity differences are generally greater than 1.7  The formation of ionic bonds is always exothermic!
Bonding. Introduction to Bonding: Chemical bond: the force that holds two atoms together Bonds may be formed by the attraction of a cation to an anion.
From an Atom to a Solid Photoemission spectra of negative copper clusters versus number of atoms in the cluster. The highest energy peak corres- ponds.
Secondary Electron Emission in the Limit of Low Energy and its Effect on High Energy Physics Accelerators A. N. ANDRONOV, A. S. SMIRNOV, St. Petersburg.
Chapter 7 The electronic theory of metal Objectives At the end of this Chapter, you should: 1. Understand the physical meaning of Fermi statistical distribution.
Chapter 7 in the textbook Introduction and Survey Current density:
Thermal Conduction in Metals and Alloys Classical Approach From the kinetic theory of gases ) where, l is mean free path.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
제 4 장 Metals I: The Free Electron Model Outline 4.1 Introduction 4.2 Conduction electrons 4.3 the free-electron gas 4.4 Electrical conductivity 4.5 Electrical.
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Free electron Fermi gas ( Sommerfeld, 1928 ) M.C. Chang Dept of Phys counting of states Fermi energy, Fermi surface thermal property: specific heat transport.
Conductivity Charge carriers follow a random path unless an external field is applied. Then, they acquire a drift velocity that is dependent upon their.
Electrical Properties of Materials
Interplay of disorder and interactions
Interplay between disorder and interactions
Free electron Fermi gas (Sommerfeld, 1928)
Kondo effect Him Hoang
Chapter 5 - Phonons II: Quantum Mechanics of Lattice Vibrations
Presentation transcript:

Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature Physics, Košice, Slovakia E. BAUER Institut für Festkörperphysik, Technische Universität Wien, Wien, Austria D. K. MAUDE Grenoble High Magnetic Field Laboratory (CNRS), BP 166, Grenoble Cedex 9, France A. G. M. JANSEN Service de Physique Statistique, Magnétisme, et Supraconductivité, CEA-Grenoble, Grenoble Cedex 9, France Outline 1.Motivation 2.Point contact spectroscopy 3.Results 4.Conclusions

YbCu 3.5 Al 1.5 is a well-known example of a non-Fermi liquid (NFL) system crystallizing in the hexagonal CaCu 5 structure major characteristic NFL features of this compound (our sample) - negative logarithmic contribution to the specific heat - substantial deviations of the electrical resistivity from a T 2 dependence, T n where n < 2 were proven in E. Bauer et al., Phys. Rev. B60 (1999) 1238 proximity to a quantum critical point was demonstrated considering the self consistent renormalization model – preference to spin fluctuations Ch. Seuring et al., J. Low Temp. Physics 123 (2001) 25 magnetic field suppresses the NFL behaviour - 12 T probably sufficient to recover a FL state NFL behaviour of point contacts (PC) between YbCu 3.5 Al 1.5 and Cu first in M. Reiffers et al., J. Magn. Magn. Mater (2004) 625 only a few reports of PCS of NFL systems Motivation

E. Bauer et al., Phys. Rev. B60, 2 (1999) 1238 x = 1.3 – Kondo lattice T K = 31 K x = 1.4 – NFL behaviour x cr = NFL behaviour x = 1.6 – magnetic ordering T N = 0.25 K X = 1.75 – magnetic ordering T N = 1 K

Point contact spectroscopy PC means a metallic constriction with size d smaller than mean scattering length l of conduction electrons Applying of voltage to the contact – conduction electrons gain an energy ~ eV PC spectroscopy - scattering of conduction electrons with other quasiparticles in metals First derivative dV/dI(V) of I-V characteristic – dynamic resistance Second derivative d 2 V/dI 2 (V) of I-V characteristic – directly proportional to the electron quasiparticle interaction (EQI) Wexler formula: 1. ballistic - l el, l in >> d 2. diffusive – l el << d << (l el l in ) 1/2 3. thermal - l el, l in << d  l   cm 2  cm (4 K) l  1-10 nm

dV/dI curves versus V for YbCu 3.5 Al 1.5 – YbCu 3.5 Al 1.5 (solid line) and YbCu 3.5 Al 1.5 – Pt (dots) at 1.5 K. Comparison of dV/dI for heterocontact YbCu 3.5 Al 1.5 – Pt at 0.1 and 6 K. Results

dV/dI curves versus V for YbCu 3.5 Al 1.5 – Pt (solid line), symmetric part of dV/dI (dash line) and asymmetric part of dV/dI (dash dot line) at 1.5 K. dV/dI(V) s = [dV/dI(V > 0) + dV/dI(V 0) - dV/dI(V < 0)]/2 Comparison of dV/dI for homocontact YbCu 3.5 Al 1.5 – YbCu 3.5 Al 1.5 (solid line) vs. symmetric part of heterocontact YbCu 3.5 Al 1.5 – Pt (dash line) at 1.5 K. Results

Characteristic magnetic field behviour of dV/dI for heterocontact YbCu 3.5 Al 1.5 – Pt at 1.5 K. R PC (B) for heterocontact YbCu 3.5 Al 1.5 – Pt at 1.5 K. Results

Conclusions needle anvil arrangement of PC high  in orders 100  cm, short mean free path maximu close to zero; homocontact – origin YbCu 5-x Al x contradiction to thermal regime (calculated) in magnetic field – dV/dI(V, B) similar to  (T, B) asymmetry due to NFL features? more suitable MCBJ – higher R PC YbRh 2 Si 2  in orders 1  cm, single crystal G.Pristáš, M.Reiffers, E.Bauer: Point-contact properties of non-Fermi liquid compounds YbCu 5-x Al x (x = 1.3, 1.4 and 1.6) in the vicinity of QCP, Physica B (2006) Oral presentation CSMAG’07: Point Contact Spectroscopy of Non-Fermi Liquid Compound YbCu 5-x Al x (x = ) In High Magnetic Fields G.Pristáš, M.Reiffers, E.Bauer, A. G. M. Jansen, D. Maude. -review paper - homocontacts, high magnetic fields…