Omniran-14-0065-00-CF00 1 Key Concepts of Network Selection and Detection Date: 2014-09-15 Authors: NameAffiliationPhoneEmail Max RiegelNokia Networks+49.

Slides:



Advertisements
Similar presentations
(omniran TG) Short introduction into OmniRAN P802.1CF Date: Authors: NameAffiliationPhone Max RiegelNokia.
Advertisements

Omniran Network Detection and Selection Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran TG 1 Cooperation for OmniRAN P802.1CF Max Riegel, NSN (Chair OmniRAN TG)
Omniran GPP Trusted WLAN Access to EPC Use Case Analysis Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran IEEE 802 Enhanced Network Detection and Selection Date: Authors: NameAffiliationPhone Max RiegelNSN
SDN-based OmniRAN Use Cases Date: [ ] Authors: NameAffiliationPhone Antonio de la OlivaUC3M+34 Juan Carlos ZúñigaInterDigital+1.
Omniran OmniRAN Proximity Service use case Date: [ ] Authors: NameAffiliationPhone Hyunho ParkETRI
Omniran IEEE 802 Scope of OmniRAN Date: Authors: NameAffiliationPhone Max RiegelNSN
OmniRAN ecsg SDN-based Control Plane and Data Plane Separation in OmniRAN Network Reference Model Date: Authors: NameAffiliationPhone .
Omniran ZigBee SEP2 Smart Grid Use Case Analysis Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran OmniRAN Wi-Fi Hotspot Roaming Use Case Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran PtP Links across IEEE 802 Bridged Infrastructure Date: Authors: NameAffiliationPhone Max
Omniran ZigBee SEP2 Smart Grid Use Case Analysis Date: Authors: NameAffiliationPhone Max RiegelNSN
OmniRAN-15-00xx WLAN as a Component (WaaC) Date: xx Authors: NameAffiliationPhone Yonggang FangZTETX Bo SunZTE He HuangZTE Notice:
OmniRAN Specification – Structuring the effort Document Number: Omniran Date Submitted: Source: Max Riegel
Omniran CF00 1 P802.1CF NRM Discussions Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Discussion on NRM Control Reference Points Information and Parameters Date: Authors: NameAffiliationPhone Antonio de la Oliva University.
OmniRAN SDN-based OmniRAN Use Cases Summary Date: Authors: NameAffiliationPhone Antonio de la OlivaUC3M+34
An SDN-based approach for OmniRAN Reference Point mapping Date: [ ] Authors: NameAffiliationPhone Antonio de la
Omniran CF00 1 OmniRAN R3 Considerations Date: Authors: NameAffiliationPhone Max RiegelNSN
Privecsg Privacy Engineered Access Network Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Omniran CF00 1 P802.1CF NRM Mapping to real networks Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Omniran CF CF Network Reference Model Introduction Date: Authors: NameAffiliationPhone Max RiegelNokia Networks+49.
Omniran Thoughts about the tenets in IEEE 802.1CF Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 Fault Diagnosis and Maintenance Date: [ ] Authors: NameAffiliationPhone Hao WangFujitsu R&D
Omniran IEEE 802 Scope of OmniRAN Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 Key Concepts of Fault Diagnostics and Maintenance Date: [ ] Authors: NameAffiliationPhone Hao WangFujitsu R&D
Omniran CF00 1 VLANs in relation to P802.1CF NRM Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Omniran IEEE 802 OmniRAN EC SG Results and Outlook Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 CF ToC Refinements Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 Content and outline considerations for Annex: Applicability to non-IEEE 802 PHY layer technologies Date: Authors:
OmniRAN IEEE 802 OmniRAN Recommended Practice ToC Proposal Date: Authors: NameAffiliationPhone Yonggang
Omniran CF00 1 Key Concepts of Authentication and Trust Establishment Date: Authors: NameAffiliationPhone Max RiegelNokia Networks+49.
Omniran CF00 1 IEEE OmniRAN TG Athens NRM Conclusions Max Riegel, Nokia Networks (OmniRAN TG Chair)
OmniRAN CF00 1 IEEE 802 omniRAN Network Reference Model Amendment Date: Authors: NameAffiliationPhone Yonggang
Omniran CF00 1 P802.1CF NRM Backhaul Considerations Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Omniran CF00 1 Key Concepts of Network Selection and Detection Date: Authors: NameAffiliationPhone Max RiegelNokia Networks+49.
OmniRAN IEEE 802 OmniRAN Architecture Proposal Date: Authors: NameAffiliationPhone Yonggang Bo.
Submission doc.: IEEE arc March 2014 Max Riegel (NSN)Slide 1 Cross-WG cooperation on OmniRAN P802.1CF E.g.: Network Discovery and Selection.
Omniran IEEE 802 Scope of OmniRAN Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran TG 1 Cooperations for OmniRAN P802.1CF Max Riegel, NSN (Chair OmniRAN TG)
Ec GSG 1 OmniRAN TG perspective on cost and benefits of 5G SC options Max Riegel OmniRAN TG chair
Omniran CF00 1 Key Concepts of Association and Disassociation Date: Authors: NameAffiliationPhone Max RiegelNokia
Omniran CF00 1 Key Concepts of Accounting and Monitoring Date: Authors: NameAffiliationPhone Hao WangFujitsu R&D
OmniRAN omniRAN Network Function Virtualization Date: Authors: NameAffiliationPhone Yonggang FangZTETX Zhendong.
Omniran Backhaul representation in OmniRAN SDN model Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 P802.1CF NRM Ambiguities Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
P802.1CF NRM Mapping to real networks
P802.1CF architectural considerations for EM and NM
IEEE OmniRAN TG Status Report to IETF – IEEE 802 Coordination
Chapter 7.1 Restructuring Proposal
Date: < yyyy-mm-dd >
P802.1CF D1.0 Figure Proposals Abstract
Network instantiation
Brief Introduction to OmniRAN P802.1CF
P802.1CF architectural considerations for EM and NM
Terminology clean-up User/Subscriber
Terminology clean-up User/Subscriber
P802.1CF operational models
Key concepts of authorization, QoS, and policy control
P802.1CF D1.0 Figure Proposals Abstract
P802.1CF NRM Refinements Abstract
IEEE 802 Scope of OmniRAN Abstract
P802.1CF NRM Refinements Abstract
[place document title here]
802.1CF ToC Refinements Abstract
OmniRAN SDN Use Case ToC
SDN-based OmniRAN Use Cases Summary
OmniRAN SDN Use Case ToC
IEEE 802 RAN Recommended Practice ToC Proposal
Presentation transcript:

omniran CF00 1 Key Concepts of Network Selection and Detection Date: Authors: NameAffiliationPhone Max RiegelNokia Networks Notice: This document does not represent the agreed view of the IEEE OmniRAN TG. It represents only the views of the participants listed in the ‘Authors:’ field above. It is offered as a basis for discussion. It is not binding on the contributor, who reserve the right to add, amend or withdraw material contained herein. Copyright policy: The contributor is familiar with the IEEE-SA Copyright Policy. Patent policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: and. Abstract The presentation provides a summary of the key concepts and identifiers for the specification of Network Detection and Selection. It is brought up to build concensus within OmniRAN TG on the topic to establish a foundation for creation of a text contribution to P802.1CF on the topic.

omniran CF00 2 Key Concepts of Network Discovery and Selection Max Riegel (Nokia Networks)

omniran CF00 3 Internet/Web Applications P802.1CF in the big picture of the Internet LINK PHY IP TCP HTTP WWW LINK PHY LINK PHY LINK PHY IP TCP HTTP WWW Peer (Client) Peer (Server) Internet LINK PHY IP LINK PHY IP LINK PHY IP LINK PHY IP LINK PHY IP LINK PHY IP LINK PHY LINK PHY P802.1CF Domain UE Access Router

omniran CF00 4 P802.1CF Draft ToC Introduction and Scope Abbreviations, Acronyms, Definitions, and Conventions References Identifiers Network Reference Model –Overview –Reference Points –Access Network Control Architecture Multiple deployment scenarios including backhaul Functional Design and Decomposition –Dynamic Spectrum Access –Network Discovery and Selection –Association and Disassociaiton –Authentication and Trust Establishment –Datapath establishment, relocation and teardown –Authorization, QoS and policy control –Accounting and monitoring SDN Abstraction –Terminal –Access Network Annex: –Tenets (Informative)

omniran CF00 5 NDS Chapter Structure Functional Design and Decomposition –Dynamic Spectrum Access –Network Discovery and Selection Generic functional requirements and information flows Ethernet functional design< WPAN functional design< WLAN functional design< WMAN functional design< WRAN functional design< –Association and Disassociaiton –Authentication and Trust Establishment –Datapath establishment, relocation and teardown –Authorization, QoS and policy control –Accounting and monitoring

omniran CF00 6 NDS Functional Requirements IEEE 802 network discovery and selection should support more complex scenarios: –Multiple access technologies –Multiple different access networks –Multiple subscriptions –Specific service requirements –No a-priori knowledge about offered services CORE A CORE B CORE C Access Network >2< Access Network >3< Access Network >1<

omniran CF00 7 Network Discovery and Selection Functions A process which allows a station to retrieve the list of all access network interfaces in reach by –Passive scanning –Active scanning –Data base query Retrieving supplementory information for each of the access network interfaces to learn about –Identity of the access network –Supported Subscriptions –Supported Services Some algorithm in the station, which processes all the retrieved information, for determination of the ‘best’ access network interface to connect to.

omniran CF00 8 NDS Roles and Identifiers User –One or more Subscriptions Subscription Identifier {NAI} + Subscription Name {String} Terminal –Station STA {EUI-48} Access Network –One or more Access Network Interfaces ANI {EUI-48} –Access Network AN Identifier {EUI-48} + AN Name {String} –Supported Subscription Services –Supported User Services –Access Network Capabilities Record of capabilities {t.b.d. (ANQP???} CORE –Subscription Service – ‘Termination point of AAA’ SSP Identifier {FQDN} + SSP Name {String} –User Service – ‘Termination point of IEEE 802 user plane’ USP Identifier {???} + USP Name {String}

omniran CF00 9 NDS Technology Specific Design IdentifiersSTAEUI-48 EUI-64EUI-48 ANIEUI-48 EUI-64EUI-48 AN-id???EUI-48???EUI-48 AN-name256 Char30 Char??? SubscriptionsNAINAI/PSK???/PSKNAI Multiple COREsInfoANQP-?- Discovery processmanualpassive, active passive NDS is applicable to IEEE 802 terminals –Only technologies used within terminal are relevant Is there any i/f applicable to P802.1CF?

omniran CF00 10 Conclusion … coming