Chapter 4 Hydrodynamics of Laser Plasma as Neutral Fluids
4.1 Laser Solid Interaction
Linear Heat Conduction c : constant Heat Diffusion (Linear)
Heat Wave by Electron or Radiation Drunken Walk Model Finite differential Eq. Nonlinear Heat Wave
4. 2 Plasma as Fluids 1. Equation of Continuity 2. Equation of Motion 3. Equation of State P = P(r,T) 4. Equation of Energy
Lagrangian and Euler Description of time evolution of fluid プラズマ物理学(第4回) 2017/4/27 Lagrangian and Euler Description of time evolution of fluid 理学部物理(3回生)平成14年度
Typical EOS of Material from Solid to Plasma States
Sound Wave 1. Linearized Equations 3. Propagation Equation 2. Sound Velocity General Solution r1 = f(x-Vst) + g(x+Vst)
Compressibility of Fluids 4. Bulk Modulus 5. Incompressible Fluids 6. Potential Flow 9
3, Rankin-Hugoniot Relation 1. Nonlinearity Shock Wave 3, Rankin-Hugoniot Relation 1. Nonlinearity P0, V0 P1, V1 2. Shock Waves
Shock Waves by High Velocity
Shock Tube Experiment
Deflagration Wave
Chemical Deflagration
P-V Diagram of Laser Plasma
Simulation Example High-Gain Implosion ILESTA-code
Ablation Pressure (Mbar) 4.3 Ablation Physics Ablation Pressure (Mbar) Experimental Data Laser Intensity (W/cm2)
Photon and Ablation Pressures
1020 difference t 4.4 Blast Wave Laser BW Supernova BW Self-similar Solution 2/5 R = t 1020 difference
Normalized Sedov-Taylor Self-Similar Solution
Blast Wave E=109 J TNT 1 ton 100 m 1cm Laser Blast Wave E=100 J
E=1017J H-Bomb 1 Mega Ton TNT
Taylor-Sedov is also called Taylor-Sedov-Neuman Solution von Neuman and ENIAC
E=1044J Supernova Remnant (Cas A)
4.5 Supernova Remnants (SNRs) SN1987A
Supernova Explosion
Tyco SNR
Young SNRs by Chandra(US X-s) Cas A Kepler Tycho 0.06pc 0.04pc 0.01pc 0.007pc 0.02pc 0.02pc
4.6 Young Stellar Jets and Bow Shocks
Experiment Rage(LANL) PETRA(AWE) CALE(LLNL) Simulations(2D)