Antimatter in our Galaxy unveiled by INTEGRAL Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France.

Slides:



Advertisements
Similar presentations
Millisecond pulsar population and related high energy phenomena 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.
Advertisements

NuSTAR CIT JPL Columbia LLNL DSRI UCSC SLAC Spectrum The Nuclear Spectroscopic Telescope Array (NuSTAR) Hard X-ray ( keV) Small Explorer (SMEX) mission.
Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.
Dark Matter Annihilation in the Milky Way Halo Shunsaku Horiuchi (Tokyo) Hasan Yuksel (Ohio State) John Beacom (Ohio State) Shin’ichiro Ando (Caltech)
S.Mereghetti - Simbol-X: The hard X-ray Universe in focus - Bologna -15/5/20071 Studying the Galactic Ridge Emission with SIMBOL-X Sandro Mereghetti IASF.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Fluorescent Iron-Line Emission in the Galactic Centre Bob Warwick University of Leicester, UK.
GRB afterglows as background sources for WHIM absorption studies A. Corsi, L. Colasanti, A. De Rosa, L. Piro IASF/INAF - Rome WHIM and Mission Opportunities.
Eiichiro Komatsu University of Texas at Austin A&M, May 18, 2007
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
Working Group 2 - Ion acceleration and interactions.
The Milky Way PHYS390 Astrophysics Professor Lee Carkner Lecture 19.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
The all-sky distribution of 511 keV electron-positron annihilation emission Kn ö dlseder, J., Jean, P., Lonjou, V., et al. 2005, A&A, 441, 513.
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: High Energy II: X-ray Binaries Geoff Bower.
China’s Future Missions in Space High Energy Astrophysics Shuang Nan Zhang 张双南 Tsinghua University and Institute of High Energy Physics, Chinese Academy.
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Gamma-ray From Annihilation of Dark Matter Particles Eiichiro Komatsu University of Texas at Austin AMS April 23, 2007 Eiichiro Komatsu University.
The Milky Way Center, Shape Globular cluster system
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
The synthesis of 26 Al, 60 Fe and 44 Ti in massive stars and their current inventory in our Galaxy Alessandro Chieffi Istituto Nazionale di AstroFisica.
Nebular Astrophysics.
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
Gamma-ray Bursts in the E-ELT era Rhaana Starling University of Leicester.
The TeV view of the Galactic Centre R. Terrier APC.
An absorbed view of a new class of INTEGRAL sources.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
Prospects in space-based Gamma-Ray Astronomy Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France On behalf of the European Gamma-Ray.
Suzaku, XMM-Newton and Chandra Observations of the Central Region of M 31 Hiromitsu Takahashi (Hiroshima University, Japan) M. Kokubun, K. Makishima, A.
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
Celine Bœhm, Geneva 2005 What would be the shape of the Milky Way Dark halo profile if DM was light?
The X-ray Universe Sarah Bank Presented July 22, 2004.
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Internal Irradiation of the Sgr B2 Molecular Cloud Casey Law Northwestern University, USA A reanalysis of archived X-ray and radio observations to understand.
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
Prof. Steven Boggs UCB Space Sciences Laboratory SPI Instrument Team Activities Prof. Steven Boggs (PI) Dr. Cornelia Wunderer (SPI CoI) Dr. Emrah Kalemci.
Spatial Distribution of the Galactic Diffuse X-Rays and the Spectral/Timing Study of the 6.4-keV Clumps Katsuji Koyama Department of Physics, Graduate.
INTEGRAL insight into the inner part of the Galaxy. High-mass X-ray binaries and Galactic spiral structure A.Lutovinov, M.Revnivtsev, M.Gilfanov, S.Molkov,
SPI Data Analysis A. Strong MPE Moriond, Les Arcs 2002.
Introduction KU-4/2007 The ISM K.D.Kuntz The Henry A. Rowland Department of Physics and Astronomy The Johns Hopkins University (Diffuse Emission in Galaxies)
X-ray study of a nearby nuclear X-ray study of a nearby nuclear starburst and a nearby AGN starburst and a nearby AGN Roberto Soria (UCL) Mat Page, Kinwah.
THE RIDDLE OF P0SITRONS IN THE GALACTIC BULGE M.Cassé Service d’Astrophysique,CEA, Institut d’Astrophysique de Paris OUTLINE SPI /INTEGRAL.
Diffuse Emission and Unidentified Sources
Our Milky Way Galaxy. The Milky Way Almost everything we see in the night sky belongs to the Milky Way. We see most of the Milky Way as a faint band of.
Antimatter in our Galaxy unveiled by INTEGRAL
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
RGS observations of cool gas in cluster cores Jeremy Sanders Institute of Astronomy University of Cambridge A.C. Fabian, J. Peterson, S.W. Allen, R.G.
The GRB Luminosity Function in the light of Swift 2-year data by Ruben Salvaterra Università di Milano-Bicocca.
Finding Black Hole Systems in Nearby Galaxies With Simbol-X Paul Gorenstein Harvard-Smithsonian Center for Astrophysics.
14 may 2007Simbol-X workshop - Bologna1 44 Ti nucleosynthesis γ –ray lines with Simbol-X Matthieu Renaud Max-Planck-Institute für Kernphysik Heidelberg,
The 7-year view of the accreting X-ray binaries with INTEGRAL R.Krivonos, M.Revnivtsev, S.Tsygankov, E.Churazov, R.Sunyaev MPA Garching, Germany; IKI,
High-mass X-ray binaries in the inner part of the Galaxy A.Lutovinov, M.Revnivtsev, M.Gilfanov, S.Molkov, P.Shtykovskiy, R.Sunyaev (IKI, Moscow/MPA, Garching)
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
C. ShraderGLAST Users CommitteeMay 9, INTEGRAL Science Highlights.
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
Supernova progenitors: clues from gamma-ray observations
The X-ray Universe 2008 Granada, 29 May 2008
HARD X-RAY/SOFT g-RAY OBSERVATIONS OF THE GALACTIC DIFFUSE EMISSION WITH INTEGRAL/SPI SPI SPECTROMETER (20 keV – 8 MeV, foV 30°) ONBOARD INTEGRAL OBSERVATORY.
Christoph Winkler, AWG #127, 18 January 2007, Page 2
Can dark matter annihilation account for the cosmic e+- excesses?
Suzaku First Results on Galactic Diffuse Objects
ESA’s INTEGRAL Mission
Eiichiro Komatsu University of Texas at Austin A&M, May 18, 2007
X-rays from the Galactic Center
Presentation transcript:

Antimatter in our Galaxy unveiled by INTEGRAL Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France

Antimatter annihilation E = m c 2

Galactic positron annihilation Morphology & Flux 3 components : - bulge - disk - PLE Bulge morphology highly uncertain Total flux : (1-3) x ph cm -2 s -1 Bulge / Disk flux ratio : Purcell et al OSSE, TGRS, SMM, … Kinzer et al Spectroscopy centroid ~ 511 keV Gaussian FWHM ~ keV positronium fraction 0.93 ± 0.04 The pre-INTEGRAL epoch

INTEGRAL ESA’s INTErnational Gamma-Ray Astrophysics Laboratory Launch : 17 october 2002 Mission duration : 2008 Orbit : 72 h, excentric Guest observer time : % IBIS : Imager on Board the Integral Satellite keV, 12’, R ≈ 12 SPI : SPectrometer onboard Integral keV, 2.5°, R ≈ 500 JEM-X : Joint European Monitor for X-rays keV, 3’, R ≈ 10 OMC : Optical Monitoring Camera550 nm (V band), 6"

SPI SPectrometer onboard INTEGRAL

SPI all-sky exposure after ~ first year Jürgen Knödlseder, Pierre Jean, Vincent Lonjou, Georg Weidenspointner, Nidhal Guessoum, William Gillard, Gerry Skinner, Peter von Ballmoos, Gilbert Vedrenne, Jean-Pierre Roques, Stéphane Schanne, Bonnard Teegarden, Volker Schönfelder, C. Winkler, submitted to A&A 10 7 cm 2 s 1 x 10 7 cm 2 s = 133 ks

maximum : 5 x ph cm -2 s -1 at GC large parts of galactic plane better than 2 x ph cm -2 s -1 several high latitude regions better than 2 x ph cm -2 s -1 SPI 511 keV point-source sensitivity ph cm -2 s -1

Background modelling Step 1

511 keV background ~ 5 % variations

511 keV background model r(t) = r cont (t) +  1 +  2 x g(t) +  3 x ∫ g(t’) x exp((t’-t)/  ) dt’ r cont (t) : continuum background (from adjacent energies) r(t) : predicted 511 keV line background rate g(t) : GEDSAT rate  = 352 days  1,  2,  3 : fitted coefficients (detector / orbit & detector) r cont (t) g(t) ∫ g(t’) x exp((t’-t)/  ) dt’ constant

Residuals 1 %

Model fitting Step 2

511 keV bulge emission morphology Modelling with a 2d Gaussian l ° ± 0.3° b ° ± 0.3°  l (FWHM)8.1° ± 0.9°  b (FWHM)7.2° ± 0.9°  b /  l0.89 ± keV flux 1.09 ± 0.04 (10 -3 ph cm -2 s -1 )

Bulge/Halo models SPI 511 keV bulge flux : ( ) x ph cm -2 s x ph cm -2 s x ph cm -2 s x ph cm -2 s x ph cm -2 s -1

Bulge/Halo + Disk models SPI flux (imaging) ( ) x ph cm -2 s -1 SMM flux (wide FOV)( ) x ph cm -2 s x ph cm -2 s x ph cm -2 s x ph cm -2 s x ph cm -2 s -1

Comparison with tracer maps FIRRadioNIRµ-wavesVX-ray  Old stellar population K+M giants XRBs Young stellar population (free-free, CO, cold dust)

Step 2 : Conclusions BulgeHaloDisk Flux (10 -3 ph cm -2 s -1 )1.05 ± ± ± 0.5 L 511 (10 43 ph s -1 )0.90 ± ± ± 0.1 L p (10 43 s -1 )*1.50 ± ± ± 0.2 * assuming f p = 0.93 The 511 keV line emission is bulge dominated : B/D flux ratio: B/D luminosity ratio: 3 - 9

Imaging Step 3

An all-sky image of 511 keV emission Iteration 17 of accelerated Richardson-Lucy algorithm 5° x 5° boxcar smoothing Integrated 511 keV flux : 1.4 x ph cm -2 s -1

Choice of iteration Iteration 1 Exposure Log likelihoodFlux

Choice of iteration Iteration 5 Exposure Log likelihoodFlux

Choice of iteration Iteration 10 Exposure Log likelihoodFlux

Choice of iteration Iteration 17 Exposure Log likelihoodFlux

Choice of iteration Iteration 25 Exposure Log likelihoodFlux

Choice of iteration Iteration 40 Exposure Log likelihoodFlux

Choice of iteration Iteration 70 Exposure Log likelihoodFlux

Choice of iteration Iteration 100 Exposure Log likelihoodFlux

511 keV line and Ps continuum emission Galactic Centre emission Weidenspointner et al. (2005) Positronium continuum same morphology Ps fraction ~98 %

Spectroscopy Step 4

Galactic bulge spectrum Model : Gauss + positronium + continuum Energy ± 0.03 keV FWHM 2.07 ± 0.10 keV Flux10.0 x ph cm -2 s -1

Galactic bulge spectrum Model : 2 Gauss + positronium + cont. Energy ± 0.03 keV FWHM ± 0.40 keV FWHM ± 1.11 keV Flux x ph cm -2 s -1 Flux x ph cm -2 s -1 Narrow Gauss (FWHM = 1.1 keV) : ~65 % Thermalised positrons Broad Gauss (FWHM = 5.1 keV) : ~35 % Inflight positronium formation (quenched if fully ionised) Consistent with 8000 K ISM with ionisation fraction of ~ Churazov et al. 2005

Comparison with OSSE Results basically consistent with OSSE - emission centred on GC - bulge dominates emission - flux consistent Results basically consistent with OSSE - emission centred on GC - bulge dominates emission - flux consistent SPI bulge slightly larger than OSSE bulge SPI bulge slightly larger than OSSE bulge No PLE (flux 3  < 1.5 x ph cm -2 s -1 ) No PLE (flux 3  < 1.5 x ph cm -2 s -1 ) QuantitySPI (1 yr)OSSE (9 yr) l ° ± 0.3° -0.25° ± 0.25° b ° ± 0.3°-0.3° ± 0.2°  l (FWHM)8.1° ± 0.9° 6.3° ± 1.5°  b (FWHM)7.2° ± 0.9°4.9° ± 0.7° 511 keV flux (10 -3 ph cm -2 s -1 ) B/D flux ratio

Constraints on the disk source 511 keV1809 keV ( 26 Al) 26 Al decays via  + decay (85%) F 511 = 0.5 x F 1809 (f p = 0.93) Expected : 5 x ph cm -2 s Sc decays via  + decay (99%) M 44 ~ 4 x M  yr -1 (chem. evol.) Morphology and escape fraction unknown Expected : 8 x ph cm -2 s -1 Observed disk flux ~ (4-8) x ph cm -2 s -1 Observed disk flux ~ (4-8) x ph cm -2 s -1 60% - 100% of the disk flux can be explained by 26 Al 60% - 100% of the disk flux can be explained by 26 Al Rest (if any) is comfortably explained by 44 Ti Rest (if any) is comfortably explained by 44 Ti There seems to exist a pure bulge positron source ! There seems to exist a pure bulge positron source !

Constraints on the bulge source Wolf-Rayet stars Hypernovae / GRB Core-collapse SNe Pulsars CR interactions with ISM Dark matter SN Ia Novae HMXB LMXB Stellar flares

Constraints on the bulge source Wolf-Rayet stars Hypernovae / GRB Core-collapse SNe Pulsars CR interactions with ISM Dark matter SN Ia Novae HMXB LMXB Stellar flares Strong disk component expected

Constraints on the bulge source Wolf-Rayet stars Hypernovae / GRB Core-collapse SNe Pulsars CR interactions with ISM Dark matter SN Ia Novae HMXB LMXB Stellar flares

Constraints on the bulge source Dark matter SN Ia Novae LMXB

Low-mass X-ray binaries Positron production processes  +   e + + e - (pair jet) N + N’  N*  N + e +Uncertainties Yield Line shape (broad versus narrow) Grimm et al Observed LMXB B/D ~ 1 Liu et al. 2000,2001 B/D too small ? (completeness) B/D too small ? (completeness) Why only LMXB and not HMXB ? Why only LMXB and not HMXB ?

Novae Positron production processes 13 N  13 C (  = 14 min, 100%) 18 F  18 O (  = 2.6 hr, 97%) 22 Na  22 Ne (  = 3.8 yr, 90%) 26 Al  26 Mg (  = 10 6 yr, 85%) Uncertainties B/D ratio (values up to 4 proposed for M31) M31 : 2 types of novae (bulge & disk) bulge : slow-dim, associated with CO disk : fast-bright, associated with ONe Nova rate (20-40 per year) Escape fractions (important for 13 N and 18 F) B/D probably OK (in particular if only CO novae contribute) B/D probably OK (in particular if only CO novae contribute) 13 N : if 100% escape  bulge CO nova rate 25 century -1 required (but models predict that 13 N e + are absorbed in expanding shell) 13 N : if 100% escape  bulge CO nova rate 25 century -1 required (but models predict that 13 N e + are absorbed in expanding shell) Yields YieldsCO (0.8 M  ) ONe (1.25 M  ) 13 N2 x x F2 x x Na7 x x Al2 x x Hernanz et al. 2001

Type Ia supernovae Positron production processes 57 Ni  57 Co (  = 52 hr, 40%) 56 Co  56 Fe (  = 111 d, 19%) 44 Sc  44 Ca (  = 5.4 hr (87 yr), 99%) Uncertainties B/D ratio (poorly known) SN Ia explosion mechanism SN Ia rate ( per century) Escape fraction (important for 57 Ni and 56 Co) 57 Ni : no chance for positrons to escape 57 Ni : no chance for positrons to escape 56 Co : 3% escape would require bulge rate of 0.6 century Co : 3% escape would require bulge rate of 0.6 century Sc : always escape, Sub-Ch would require bulge rate of century -1 (but : overproduces galactic 44 Ca abundance & makes bright 44 Ti bulge) 44 Sc : always escape, Sub-Ch would require bulge rate of century -1 (but : overproduces galactic 44 Ca abundance & makes bright 44 Ti bulge) Different types of SN Ia in bulge (underluminous) and disk (overluminous) ? Different types of SN Ia in bulge (underluminous) and disk (overluminous) ? Yields Yields ChSub-Ch 57 Ni Co Sc(7-20) x (1-4) x Woosley 1997; Woosley & Weaver 1994

Dark matter Distribution not well known Distribution not well known No flux prediction No flux prediction Sgr dwarf not detected Sgr dwarf not detected

General conclusions The 511 keV sky is bulge / halo dominated (B/D > 3) The 511 keV sky is bulge / halo dominated (B/D > 3) Besides bulge / halo and disk, no further 511 keV emission is observed (no PLE) Besides bulge / halo and disk, no further 511 keV emission is observed (no PLE) The disk component can be entierly explained by  + decay of radioactive 26 Al and 44 Ti The disk component can be entierly explained by  + decay of radioactive 26 Al and 44 Ti The origin of the bulge component is still mysterious (LMXB, Novae, SN Ia, dark matter ?) The origin of the bulge component is still mysterious (LMXB, Novae, SN Ia, dark matter ?) What is the bulge / halo e + source ? What is the bulge / halo e + source ? Has the bulge / halo e + source a disk component ? Has the bulge / halo e + source a disk component ? Can we learn something about SN Ia / Novae distribution and types ? Can we learn something about SN Ia / Novae distribution and types ? Observe nearby candidate sources (SNR, LMXB) Observe nearby candidate sources (SNR, LMXB) Deep observations at high galactic latitudes & galactic plane Deep observations at high galactic latitudes & galactic plane