Example Determine η, FF, RF, TUF, PIV of the diode, CF of the input current, input PF.

Slides:



Advertisements
Similar presentations
AC  DC: Using a full-wave diode rectifier circuit (used in the music system final project) The 20:1 turns ratio transformer here reduces the rms voltage.
Advertisements

Kazi Md. Shahiduzzaman Lecturer, EEE,NUB
Dr. Ali M. Eltamaly King Saud University
Zener effect and Zener diode –When a Zener diode is reverse-biased, it acts at the breakdown region, when it is forward biased, it acts like a normal PN.
Diode Applications Half wave rectifier and equivalent circuit with piece-wise linear model Ideal Vc Rf vi v i = VM sin (t)
Single-Phase Half-Wave Rectifier
9/29/2004EE 42 fall 2004 lecture 131 Lecture #13 Power supplies, dependent sources, summary of ideal components Reading: Malvino chapter 3, Next:
Power Electronics Lecture (7) Prof. Mohammed Zeki Khedher Department of Electrical Engineering University of Jordan 1.
Single-Phase Half-Wave Rectifier
Electronic Circuits POWER SUPPLIES.
Principles & Applications
Diode Circuits or Uncontrolled Rectifier
McGraw-Hill © 2008 The McGraw-Hill Companies Inc. All rights reserved. Electronics Principles & Applications Seventh Edition Chapter 4 Power Supplies.
Engineering H192 - Computer Programming Gateway Engineering Education Coalition Lab 4P. 1Winter Quarter Analog Electronics Lab 4.
DC Analysis Representation of diode into three models Ideal case – model 1 with V  = 0 Piecewise linear model 2 with V  has a given value Piecewise linear.
Rectification – transforming AC signal into a signal with one polarity – Half wave rectifier Recall Lecture 6 Full Wave Rectifier – Center tapped – Bridge.
Diode Theory and Application
Microelectronics Circuit Analysis and Design
RECTIFICATION Normal household power is AC while batteries provide DC, and converting from AC to DC is called rectification. Diodes are used so commonly.
Recall-Lecture 5 Zener effect and Zener diode Avalanche Effect
Principles & Applications
Chapter 2: Diode Applications. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 26 Diode Models, Circuits.
Unit-3 RECTIFIERS, FILTERS AND REGULATORS :Half wave rectifier, ripple factor, full wave rectifier, Harmonic components in a rectifier circuit, Inductor.
0 Chap. 3 Diodes Simplest semiconductor device Nonlinear Used in power supplies Voltage limiting circuits.
Parul Institute of Engineering & Technology Name of Unit : Diode And Its Applications___________ Topic : BRIDGE RECTIFIER_________________________ Name.
Electronic Devices and Circuit Theory
Diode: Application Half-Wave Rectifier
Recall Lecture 6 Rectification – transforming AC signal into a signal with one polarity Half wave rectifier Full Wave Rectifier Center tapped Bridge Rectifier.
Electronics Principles & Applications Fifth Edition Chapter 4 Power Supplies ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
Thyristor Converters or Controlled Converters
Lab Experiment: 2 Objectives: To understand the diode’s characteristics. Construct the Full wave bridge rectifier. Explain it’s wave form. Name of the.
1.0 LINEAR DC POWER SUPPLY The importance of DC Power Supply Circuit For electronic circuits made up of transistors and/or ICs, this power source.
1 Surge Current in the Capacitor filter Initially the filter capacitor is uncharged. At the instant the switch is closed, voltage is connected to the bridge.
Diode Rectifier Circuits Section 4.5. In this Lecture, we will:  Determine the operation and characteristics of diode rectifier circuits, which is the.
Chapter 2: Diode Applications. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices.
Diode rectifiers (uncontrolled rectifiers)
Rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which.
Chapter 1 Common Diode Applications Basic Power Supply Circuits.
6. Unregulated Power Supply Design
Chapter 2 Diode Applications. Objectives  Explain and analyze the operation of both half and full wave rectifiers  Explain and analyze filters and regulators.
Presented To: Sir Tariq Bhatti Presented By: Maimoona Ali Roll# BS(IT) 3 rd Topic: Full Wave Rectification.
CREATED BY GROUP=01 GROUP=01 Darshan Dave Ritu Dave Kishan Desai Malek Sohil Alpha collage of Engineering.
PEAK INVERSE VOLTAGE Using the ideal diode model, the PIV of each diode in the bridge rectifier is equal to V2.This is the same voltage that was applied.
CSE251 Diode Applications – Rectifier Circuits. 2 Block diagram of a DC power supply. One of the most important applications of diodes is in the design.
PREPRAIRED BY :Solanki Kishan( ) SUB NAME :EDC TOPIC : Half And Full Wave Rectifier GUIDED BY : Nikhil Sir.
NEGATIVE HALF WAVE RECTIFIERS The analysis of negative half wave rectifier is nearly identical to that of positive half wave rectifier. The only difference.
Chapter 3 – Diode Circuits – Part 2
Electronics Technology Fundamentals Chapter 18 Basic Diode Circuits.
Full Wave Rectifier Circuit with Working Theory
Recall Lecture 8 Full Wave Rectifier Rectifier Parameters
CALCULATING CURRENTS Once the peak and average load voltage values are known, it is easy to determine the values of IL(pk) and Iave with the help of Ohm’s.
Half-wave Rectifier.
Center tap Full-Wave Rectifier.
Recall Lecture 7 Voltage Regulator using Zener Diode
Chapter 2: Diode Applications
Diode Circuit Analysis 2
Recall-Lecture 6 Zener effect and Zener diode Avalanche Effect
(a) Find the value of average charging current,
Recall Lecture 7 Voltage Regulator using Zener Diode
Fault detection Lecture (3).
Diode Applications.
Recall Lecture 6 Rectification – transforming AC signal into a signal with one polarity Half wave rectifier Full Wave Rectifier Center tapped Bridge Rectifier.
Recall Lecture 8 Full Wave Rectifier Rectifier Parameters
Review Half Wave Full Wave Rectifier Rectifier Parameters
Electronic Fundamental Muhammad Zahid
Review Half Wave Full Wave Rectifier Rectifier Parameters
Diode rectifiers (uncontrolled rectifiers)
Lecture No# 4 Prepared by: Engr. Qurban Ali Memon
Review Half Wave Full Wave Rectifier Rectifier Parameters
Presentation transcript:

Example Determine η, FF, RF, TUF, PIV of the diode, CF of the input current, input PF.

Determine the Average Voltage, Vdc

Determine the rms Voltage, Vrms

Determine Pdc, Pac, and η

Determine FF and RF

Determine the TUF

Determine the PIV PIV is the maximum (peak) voltage that appears across the diode when reverse biased. Here, PIV = Vm. - - + PIV +

Determine CF

Determine PF

Summary – Half-Wave Rectifier RF=121% High Efficiency = 40.5 Low TUF = 0.286 Low 1/TUF = 3.496 transformer must be 3.496 times larger than when using a pure ac voltage source

FULL WAVE RECTIFIER Center-Tapped Bridge

Full-Wave Rectification – circuit with center-tapped transformer Positive cycle, D2 off, D1 conducts; Vo – Vs + V = 0 Vo = Vs - V Negative cycle, D1 off, D2 conducts; Vo – Vs + V = 0 Vo = Vs - V Since a rectified output voltage occurs during both positive and negative cycles of the input signal, this circuit is called a full-wave rectifier. Also notice that the polarity of the output voltage for both cycles is the same

Notice again that the peak voltage of Vo is lower since Vo = Vs - V Vs = Vpsin t Vp V -V Notice again that the peak voltage of Vo is lower since Vo = Vs - V Vs < V, diode off, open circuit, no current flow,Vo = 0V

Full-Wave Rectification –Bridge Rectifier Positive cycle, D1 and D2 conducts, D3 and D4 off; + V + Vo + V – Vs = 0 Vo = Vs - 2V Negative cycle, D3 and D4 conducts, D1 and D2 off + V + Vo + V – Vs = 0 Vo = Vs - 2V Also notice that the polarity of the output voltage for both cycles is the same

A full-wave center-tapped rectifier circuit is shown in Figure below Assume that for each diode, the cut-in voltage, V = 0.6V and the diode forward resistance, rf is 15. The load resistor, R = 95 . Determine: peak output voltage, Vo across the load, R Sketch the output voltage, Vo and label its peak value.   ( sine wave )

SOLUTION peak output voltage, Vo Vs (peak) = 125 / 25 = 5V V +ID(15) + ID (95) - Vs(peak) = 0 ID = (5 – 0.6) / 110 = 0.04 A Vo (peak) = 95 x 0.04 = 3.8V   3.8V Vo t

EXAMPLE – Half Wave Rectifier Determine the currents and voltages of the half-wave rectifier circuit. Consider the half-wave rectifier circuit shown in Figure. Assume and . Also assume that Determine the peak diode current, maximum reverse-bias diode voltage, the fraction of the wave cycle over which the diode is conducting. A simple half-wave battery charger circuit -VR + VB + 18.6 = 0 VR = 24.6 V - VR + + -

Example: Half Wave Rectifier Given a half wave rectifier with input primary voltage, Vp = 80 sin t and the transformer turns ratio, N1/N2 = 6. If the diode is ideal diode, (V = 0V), determine the value of the peak inverse voltage. Get the input of the secondary voltage: 80 / 6 = 13.33 V PIV for half-wave = Peak value of the input voltage = 13.33 V

EXAMPLE   Calculate the transformer turns ratio and the PIV voltages for each type of the full wave rectifier center-tapped bridge Assume the input voltage of the transformer is 220 V (rms), 50 Hz from ac main line source. The desired peak output voltage is 9 volt; also assume diodes cut-in voltage = 0.6 V.

Solution: For the centre-tapped transformer circuit the peak voltage of the transformer secondary is required The peak output voltage = 9V Output voltage, Vo = Vs - V Hence, Vs = 9 + 0.6 = 9.6V Peak value = Vrms x 2 So, Vs (rms) = 9.6 / 2 = 6.79 V The turns ratio of the primary to each secondary winding is The PIV of each diode: 2Vs(peak) - V = 2(9.6) - 0.6 = 19.6 - 0.6 = 18.6 V

Solution: For the bridge transformer circuit the peak voltage of the transformer secondary is required The peak output voltage = 9V Output voltage, Vo = Vs - 2V Hence, Vs = 9 + 1.2 = 10.2 V Peak value = Vrms x 2 So, Vs (rms) = 10.2 / 2 = 7.21 V The turns ratio of the primary to each secondary winding is The PIV of each diode: Vs(peak)- V = 10.2 - 0.6 = 9.6 V

The following diode circuit and the parameters are shown in the table The following diode circuit and the parameters are shown in the table. Fill in the table how an increase in each of the “input” parameters VD,IS,VT changes each of the “output” parameters. Please use these symbols: ↑ = increase, ↓ = decrease, ‐‐ = no change. VT is the thermal voltage (kT/q) and rd is the small signal resistance The diode I‐V characteristics is : ID=Is*(exp( VD/VT) -1)  ID ~= Is exp(VD/VT)