모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.

Slides:



Advertisements
Similar presentations
Perceptron Lecture 4.
Advertisements

Optimal placement of MR dampers
MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Simple Neural Nets For Pattern Classification
September 30, 2010Neural Networks Lecture 8: Backpropagation Learning 1 Sigmoidal Neurons In backpropagation networks, we typically choose  = 1 and 
Chapter 6: Multilayer Neural Networks
Slide# Ketter Hall, North Campus, Buffalo, NY Fax: Tel: x 2400 Control of Structural Vibrations.
Fractional Order LQR for Optimal Control of Civil Structures Abdollah Shafieezadeh*, Keri Ryan*, YangQuan Chen+ *Civil and Environmental Engineering Dept.
Day 2. Lecturers: H.-J. Jung, H. Myung, KAIST, Korea Assistants: S.H. Park, D.D. Jang, KAIST, Korea Asia-Pacific Student Summer School on Smart Structures.
Solution of Eigenproblem of Non-Proportional Damping Systems by Lanczos Method In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics.
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
Yeong-Jong Moon*: Graduate Student, KAIST, Korea Kang-Min Choi: Graduate Student, KAIST, Korea Hyun-Woo Lim: Graduate Student, KAIST, Korea Jong-Heon Lee:
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Neural Network Introduction Hung-yi Lee. Review: Supervised Learning Training: Pick the “best” Function f * Training Data Model Testing: Hypothesis Function.
1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 21 Oct 28, 2005 Nanjing University of Science & Technology.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Structural Dynamics & Vibration Control Lab. 1 대용량 20 톤 MR 유체 감쇠기의 새로운 동적 모델 정형조, 한국과학기술원 건설환경공학과 최강민, 한국과학기술원 건설환경공학과 Guangqiang Yang, University of Notre.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
* 김 만철, 정 형조, 박 선규, 이 인원 * 김 만철, 정 형조, 박 선규, 이 인원 구조동역학 및 진동제어 연구실 구조동역학 및 진동제어 연구실 한국과학기술원 토목공학과 중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석 1998 한국전산구조공학회 가을.
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
Hong-Ki Jo 1), Man-Gi Ko 2) and * In-Won Lee 3) 1) Graduate Student, Dept. of Civil Engineering, KAIST 2) Professor, Dept. of Civil Engineering, Kongju.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
대한토목학회 2001 년도 학술발표대회 풍하중을 받는 구조물의 3 차원 유한요소해석 Three-dimensional Finite Element Analyses of Structures under Wind Loads 김병완 1), 김운학 2), 이인원 3) 1) 한국과학기술원.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Advanced Science and Technology Letters Vol.32 (Architecture and Civil Engineering 2013), pp Development.
1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
1 Artificial Neural Networks for Structural Vibration Control Ju-Tae Kim: Graduate Student, KAIST, Korea Ju-Won Oh: Professor, Hannam University, Korea.
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
대한토목공학회 추계 학술발표회 대구 2003 년 10 월 24 일 T. X. Nguyen, 한국과학기술원 건설 및 환경공학과 박사과정 김병완, 한국과학기술원 건설 및 환경공학과 박사후연구원 정형조, 세종대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과.
* In-Won Lee 1), Sun-Kyu Park 2) and Hong-Ki Jo 3) 1) Professor, Department of Civil Engineering, KAIST 2) Professor, Department of Civil Engineering,
Chapter 8: Adaptive Networks
Hazırlayan NEURAL NETWORKS Backpropagation Network PROF. DR. YUSUF OYSAL.
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
1 지진시 구조물의 지능제어 기법 Intelligent Control of Structures under Earthquakes 김동현 : 한국과학기술원 토목공학과, 박사과정 이규원 : 전북대학교 토목공학과, 교수 이종헌 : 경일대학교 토목공학과, 교수 이인원 : 한국과학기술원.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Kim HS Introduction considering that the amount of MRI data to analyze in present-day clinical trials is often on the order of hundreds or.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
A Presentation on Adaptive Neuro-Fuzzy Inference System using Particle Swarm Optimization and it’s Application By Sumanta Kundu (En.R.No.
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
Dynamic Analysis of Structures by
Deep Feedforward Networks
년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Simplified Algebraic Method
A Survey on State Feedback AMD Control
한국지진공학회 추계학술발표회 IMPROVED SENSITIVITY METHOD FOR NATURAL FREQUENCY AND MODE SHAPE OF DAMPED SYSTEM Hong-Ki Jo1), *Man-Gi Ko2) and In-Won Lee3) 1) Graduate.
Modified Sturm Sequence Property for Damped Systems
Control of a Hybrid System using a -Synthesis Method
Akram Bitar and Larry Manevitz Department of Computer Science
Presentation transcript:

모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수

2 Structural Dynamics & Vibration Control Lab., KAIST, Korea Contents Introduction Proposed Method Numerical Example Conclusions

3 Structural Dynamics & Vibration Control Lab., KAIST, Korea Introduction Backgrounds Ghaboussi et al.(1995) and Chen et al.(1995) Neural network can be successfully applied to the control of large civil structures. For the training of the network, the responses of a few future steps are predicted by the emulator neural network One should predetermine the desired structural response for the training of a neuro-controller.

4 Structural Dynamics & Vibration Control Lab., KAIST, Korea Kim et al. (2000,2001) Predetermining the Desired Response Need of Emulator Neural Network Problems New Training Algorithm using Cost Function Sensitivity Evaluation Algorithm Kim et al. (2000, 2001) Solutions Lee et al. (2003) Applied Kim’s new neuro-controller to semi-active control using MR damper.

5 Structural Dynamics & Vibration Control Lab., KAIST, Korea Conventional Neuro-Controllers One should determine which state variables is used as inputs of the neural network. If the mathematical model’s DOF is large, there are so many combinations of the state variables. Selecting state variables is very complicated and troublesome task for the designer.

6 Structural Dynamics & Vibration Control Lab., KAIST, Korea Proposed Neuro-Controller adopts modal states as inputs of the neural network. The modal states contain the information of the whole structural system’s behavior. It is proper to use modal states as inputs of the neuro- controller.

7 Structural Dynamics & Vibration Control Lab., KAIST, Korea Conventional neuro-control (Kim et al.) : state vector : control signal : weighting matrices (1) The neuro-controller is trained by minimizing the cost function,. Selecting state variables is very complicated and troublesome task for the designer.

8 Structural Dynamics & Vibration Control Lab., KAIST, Korea Conventional weighting matrix : New weighting matrix. : Proposed Method : modal state vector : new weighting matrix (2) The proposed neuro-controller is trained by minimizing the new cost function,. It’s very simple, because there is no need to determine which state variable is used as inputs.

9 Structural Dynamics & Vibration Control Lab., KAIST, Korea By applying the gradient decent rule to the cost at k-th step, the update for the weight can be expressed as : training rate Using the chain rule, the partial derivative of Eq. (3) can be rewritten as

10 10 Structural Dynamics & Vibration Control Lab., KAIST, Korea Let’s define the generalized error as Finally, the weight update can be simply expressed as In Eq. (6), the gain factor,, satisfies The bias is also updated by

11 11 Structural Dynamics & Vibration Control Lab., KAIST, Korea In the same manner, updates for the weight and bias between input layer and hidden layer can be obtained as

12 12 Structural Dynamics & Vibration Control Lab., KAIST, Korea Numerical Example six-story building structure (Dyke et al., 2000)

13 13 Structural Dynamics & Vibration Control Lab., KAIST, Korea Neural networks used in the numerical example input output Conventional neural network inputoutput Proposed neural network

14 14 Structural Dynamics & Vibration Control Lab., KAIST, Korea Initial weightings setup 100 initial weightings are randomly chosen. They are applied to both conventional and proposed neuro-controllers. Combinations of the state variables as the input (1) 3(2)(6) 4(3)(7)(10) 5(4)(8)(11)(13) 6(5)(9)(12)(14)(15)

15 15 Structural Dynamics & Vibration Control Lab., KAIST, Korea Procedure of numerical analysis Training El Centro earthquake ( 0 ~ 8 sec ) Accel. (m/sec 2 ) Time(sec) Accel. (m/sec 2 ) Kobe (PGA: 0.834g) Verification El Centro earthquake California earthquake Kobe earthquake California (PGA: 0.156g) El Centro (PGA: 0.348g)

16 16 Structural Dynamics & Vibration Control Lab., KAIST, Korea Normalized maximum floor displacement Normalized maximum inter-story drift Normalized peak floor acceleration Maximum control force normalized by the weight of the structure -This evaluation criteria is used in the second generation linear control problem for buildings (Spencer et al. 1997) Evaluation Criteria

17 17 Structural Dynamics & Vibration Control Lab., KAIST, Korea Results of the conventional neuro-controller S 3SS 4SFF 5SFFF 6SSFFF S : Successful training F : Failed training Each combination takes about 12 hours for training. Therefore, total consuming time for training conventional neuro-controller is 180 hours.

18 18 Structural Dynamics & Vibration Control Lab., KAIST, Korea J1 of the neuro-controller which gives the best performance among the each successful trained neuro-controller FF FFF FFF S : Successful training F : Failed training

19 19 Structural Dynamics & Vibration Control Lab., KAIST, Korea FF FFF FFF S : Successful training F : Failed training J2 of the neuro-controller which gives the best performance among the each successful trained neuro-controller

20 20 Structural Dynamics & Vibration Control Lab., KAIST, Korea FF FFF FFF S : Successful training F : Failed training J3 of the neuro-controller which gives the best performance among the each successful trained neuro-controller

21 21 Structural Dynamics & Vibration Control Lab., KAIST, Korea J1 J2 J3 Evaluation criteria of the each combination

22 22 Structural Dynamics & Vibration Control Lab., KAIST, Korea Results of the proposed neuro-controller J1J1 J2J2 J3J3 J4J Total consuming time for training proposed neuro- controller is 12 hours. Evaluation criteria of the proposed neuro-controller

23 23 Structural Dynamics & Vibration Control Lab., KAIST, Korea Comparison in Evaluation criteria Control Strategy J1J1 J2J2 J3J3 J4J4 NC(active) MNC(active) El Centrol earthquake Time(sec) Displacement (cm) Displacement of the 6 th floor under El Centro earthquake

24 24 Structural Dynamics & Vibration Control Lab., KAIST, Korea Verifications Control Strategy J1J1 J2J2 J3J3 J4J4 NC(active) MNC(active) California earthquake Time(sec) Displacement (cm) Displacement of the 6 th floor under California earthquake

25 25 Structural Dynamics & Vibration Control Lab., KAIST, Korea Control Strategy J1J1 J2J2 J3J3 J4J4 NC(active) MNC(active) Kobe earthquake Time(sec) Displacement (cm) Displacement of the 6 th floor under Kobe earthquake

26 26 Structural Dynamics & Vibration Control Lab., KAIST, Korea Conclusions A new active neuro-control strategy for seismic reduction using modal states is proposed. The performance of the proposed method is comparable with that of the conventional method. The proposed method is more convenient and simple to use in comparison with conventional method. ( Consuming time for training: 6.7 % lesser ) The proposed active neuro-control technique using modal states could be effectively used for control of seismically excited structures !

27 27 Structural Dynamics & Vibration Control Lab., KAIST, Korea Sensitivity evaluation algorithm (Kim et al., 2001) (9) In the discrete-time domain, (10) where represents the sensitivity,. State space equation of structure