超新星とダスト 2015/12/17 Contents: - Introduction (10 min) - Current issues on dust formation in SNe (20 min) - Our recent work on SN-origin presolar grains.

Slides:



Advertisements
Similar presentations
Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Advertisements

Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
What can the Interstellar Extinction Curves Tell us About? Takaya Nozawa Masataka Fukugita (Kavli IPMU, University of Tokyo) 2012/08/07.
SPSSによるHosmer-Lemeshow検定について
9.線形写像.
概要 2009 年 10 月 23 日に、いて座に出現した X 線新星 (XTE J ) を、出現から消滅まで 全天 X 線監視装置 MAXI (マキシ)で観測したところ、 新種のブラックホール新星であることが判明した。 従来のブラックホールを、 多量のガスを一気に飲み込む「肉食系」と.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
九州大学 岡村研究室 久保 貴哉 1. 利用中のAPの数の推移 2 横軸:時刻 縦軸:接続要求数 ・深夜では一分間で平均一台、 昼間では平均14台程度の接続 要求をAPが受けている。 ・急にAPの利用者数が増えてく るのは7~8時あたり.
5.連立一次方程式.
Excelによる積分.
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
伝わるスライド 中野研究室 M2 石川 雅 信. どのようなスライドを作れば良 いか 伝えたいこと.
方程式を「算木」で 解いてみよう! 愛媛大学 教育学部 平田 浩一.
銀河進化とダスト 平下 博之 (H. Hirashita) (筑波大学). 1.Importance of Dust in Galaxies 2.Evolution of Dust Amount 3.Importance of Size Distribution 4.Toward Complete.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Ia 型超新星の特異な減光則から探る 系外銀河のダスト特性 野沢 貴也 ( Takaya Nozawa ) National Astronomical Observatory of Japan 2015/06/05.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
高赤方偏移クェーサーの 星間ダスト進化と減光曲線 (Evolution of grain size distribution in high-redshift quasars: integrating large amounts of dust and unusual extinction curves)
National Astronomical Observatory of Japan
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
極めて金属量の低い星形成ガス雲 中でのダスト成長と低質量星の形 成 Nozawa et al. (2012, ApJ, 756, L35) 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構 2012/09/19 共同研究者 : 小笹 隆司(北海道大学)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
高赤方偏移クェーサー母銀河中の 星間ダスト進化と減光曲線 (Evolution of grain size distribution in high-redshift dusty quasars: integrating large amounts of dust and unusual extinction.
Detecting Cool Dust in Type Ia Supernova Remnant (ranked as priority grade B for ALMA Cycle2) Takaya Nozawa (NAOJ, 理論研究部 ) and Masaomi Tanaka.
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
MULTI3D T. Anan. MULTI3D MULTI3D (Botnen 1997) Leenaarts & Carlsson 2009; Leenaarts et al – MPI-parallelized, domain-decomposed version.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
超新星ダストのサイズ分布 2016/02/12 Contents: - Introduction - Dust formation in supernovae (SNe) - Dust destruction by SN reverse shocks - Observations of dust size.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
減光曲線から探る星間ダストの 多様性 ( Variation of interstellar dust probed by extinction curves) 野沢 貴也 (Takaya Nozawa) & 福来 正孝 (Masataka Fukugita) (Kavli IPMU, University.
Dust formation theory in astronomical environments
On the reddening law observed for Type Ia Supernovae
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Dust Models for the Extinction of Type IIn SN 2010jl Jian Gao, Jun Li, B. W. Jiang Beijing Normal University , 昆明.
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
(National Astronomical Observatory of Japan)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
2016/09/16 Properties of Interstellar Dust as Probed by Extinction Laws toward Type Ia Supernovae Takaya Nozawa (National Astronomical Observatory of Japan)
Peculiar Extinction Laws observed for Type Ia Supernovae
Dust formation theory in astronomical environments
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Ia型超新星の特異な減光則を 引き起こす母銀河ダストの性質
Formation of Dust in the Ejecta of Type Ia Supernovae
Dust Enrichment by Supernova Explosions
2017/01/23 Properties of Dust Accounting for Extinction Laws toward Type Ia Supernovae (Nozawa, T. 2016, Planetary and Space Science, 133, 36) Takaya Nozawa.
Takaya Nozawa (IPMU, University of Tokyo)
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

超新星とダスト 2015/12/17 Contents: - Introduction (10 min) - Current issues on dust formation in SNe (20 min) - Our recent work on SN-origin presolar grains (10 min) - Peculiar extinction laws toward Type Ia SNe (10 min) 野沢 貴也( Takaya Nozawa ) 国立天文台 理論研究部 (National Astronomical Observatory of Japan)

40 arcsec 億

Fraction of women Answer: number of people working on SN-dust 20 60

1-1. Summary of observed dust mass in CCSNe missing cold dust? There are increasing pieces of evidence that massive dust in excess of 0.1 M sun is formed in the ejecta of SNe Type II-P SNe young SNRs swept-up IS dust? Matsuura+2011 Balow+2010 Gomez+2012

1-2. Formation and processing of dust in SNe Nozawa 2014, Astronomical Herald Destruction efficiency of dust grains by sputtering in the reverse shocks depends on their initial size The size of newly formed dust is determined by physical condition (gas density and temperature) of SN ejecta

1-3. Achievement and issues on SN dust 〇 これまでの研究でわかったこと (重力崩壊型)超新星は、放出ガス中で大量( 0.1 M sun 以 上)の ダストを形成することができる 〇 超新星ダスト研究における現在の二つの課題 1) 観測された大量のダストはいつ形成されたのか? ➜ 中間赤外線と遠赤外線でのダスト量の違いを説明した い 2) 形成されるダストのサイズはどれくらいか? ➜ 超新星による最終的なダスト放出量を明らかにしたい

2-1. Revisiting dust mass formed in SN 1987A Wesson+15, MNRAS, 446, day 1153 day 8515 day M d ~ M sun M d ~ M sun M d ~ 0.7 M sun a ~ 0.2 µm Grain growth to large mass and size?

2-2. Origin of IR emission from SNe Dust formation in the ejecta IR echo by CS dustShock heating of CS dust Dust formation in dense shell

2-3. Evidence for dust formation in SN 2006jc ・ brightening of IR ・ rapid decline of optical light ・ blueshift of emission lines formation of CO/SiO molecules (more robust if SiO are depleted ) Tominaga+08 X-ray optical NIR Smith+08 ejecta case CDS case dust formation in cool dense shells (CDSs) explains extinction of zero-v component

2-4. Dust formation in Type IIn SN 2010jl carbon T = 1300 K silicate T = 1450 K

2-5. Dust properties in Type IIn SN 2010jl Maeda, TN, et al. (2013) Dust in SN 2010jl ・ carbon grains ・ dust mass: ~10 -3 M sun ・ grain radius: <0.1μm (possibly <0.01 µm) optical light curve

2-6. Dust formation in Type IIn SN 2010jl Gall+2014, Nature Power-law size distribution ・ α : ~3.5 ・ maximum radius : ~3-4 µm (>0.5 μm)

2-7. Caveats on Gall et al. (2014) paper We should not discuss the mass of newly formed grains by integrating the formation of dust in the ejecta and CDS Gall+2014, Nature Pre-existing circumstellar dust The mass of newly formed dust increases with time? Dust formed in cool dense shell Dust formed in the ejecta

2-8. Dust mass from line profiles in SN 1987A Bevan & Barlow 2015, submitted At 714 day ・ dust mass < 3x10 -3 M sun (< 0.07 M sun if silicate) ・ grain radius > ~0.6 µm Hα OI 6300

2-9. Evolution of dust mass in SN 1987A Dwek & Arendt 2015, ApJ, 810, 75 At 615 and 714 day ・ dust mass: ~0.4 M sun ・ silicate-dominated

2-10. Summary 〇 超新星ダスト研究における現在の二つの課題 1) 観測された大量のダストはいつ形成されたのか? ➜ 中間赤外線と遠赤外線でのダスト量の違いを説明した い 2) 形成されるダストのサイズはどれくらいか? ➜ 超新星による最終的なダスト放出量を明らかにしたい 未解決の問題 超新星イジェクタは、クランプ状になっている必要がある ではどれくらい、クランプ状になっているか? ➜ 輻射輸送だけでなく、形成するダストのサイズにも 影響

○ Presolar grains ‐ discovered in meteorites ‐ showing peculiar isotopic compositions (highly different from the solar system’s materials) ‐ thought to have originated in stars before the Sun was formed ➜ offering key information on nuclear processes in the parent stars red giants, AGB stars, supernovae, novae … ‐ mineral composition graphite, nanodiamond, TiC, SiC, Si 3 N 4, Al 2 O 3, MgAl 2 O 4, TiO 2, Mg 2 SiO 4, MgSiO 3 … 3-1. Presolar grains Al 2 O 3 (Nittler+1997) SiC (Nittler 2003) graphite (© Amari)

○ Oxygen isotopic composition of presolar oxide grains 3-2. Isotopic composition of presolar oxides Group 1 RGs Clayton & Nittler 2004 Group 2 AGB stars Group 3 / 4 unspecified or SNe? SNe A few particles of presolar Al 2 O 3 grains with radii > 0.25 µm are believed to have been produced in the ejecta of SNe Choi+1998 presolar Al 2 O 3 grains

○ Evidence for Al 2 O 3 formation in SNe ‐ Infrared spectra of Cassiopeia A (Cas A) SNR ➜ Al 2 O 3 is one of the main grain species (Douvion et al. 2001; Rho et al. 2008) 〇 Dust formation calculations ‐ the first condensate among oxide ➜ sizes of Al 2 O 3 grains : < ~0.03 µm (e.g., Nozawa+2003; Todini & Ferrara+2001) 3-3. Why we focus on presolar Al 2 O 3 grains? Douvion+2001 Nozawa+2007 Nozawa+2003 destruction in SNRs

3-4. Scaling relation for f con,∞ and a ave,∞ Λ on = τ sat /τ coll : ratio of supersaturation timescale to gas collision timescale at the onset time (t on ) of dust formation Λ on = τ sat /τ coll ∝ τ cool n gas ・ f con,∞ and a ave,∞ are uniquely determined by Λ on ## this is true for the formation of carbon and silicate grains

3-5. Formation condition of presolar Al 2 O 3 Submicron-sized presolar Al 2 O 3 grains identified as SN-origin were formed in dense clumps in the ejecta Λon > 30,000 required ➜ at least 10 times higher gas density than those predicted by 1-D SN models normal SNe 1-D model Nozawa+2015, ApJ, 811, L39

3-6. Newly formed grains can survive in SNR? Model of the calculation: M SN = (3 + 12) M sun, E exp =1.8x10 51 erg, n ISM = 1 cm -3 Evolution of dust in SNRs depends on the initial radii - a ini < 0.01 μm ➔ completely destroyed μm < a ini < 0.1 μm ➔ eroded in dense shell - a ini > 0.1 μ m ➔ injected into the ISM Nozawa+2015, ApJ, 811, L39

3-7. Summary We investigate the formation of Al 2 O 3 grains for a variety of densities and cooling rates of the gas. 1) The average radius and condensation efficiency of newly formed Al 2 O 3 grains are uniquely described by the non-dimensional quantity Λ on. 2) Presolar Al 2 O 3 grains with radii above 0.25 µm can be formed only in the gas with more than 10 times higher density than those estimated by 1-D SN models. ➜ indicating the presence of dense clumps in the SN ejecta 3) The measured sizes of presolar grains are powerful probes for constraining the physical conditions and structure in which they formed.

○ Type Ia supernovae (SNe Ia) ‐ thermonuclear explosion of a white dwarf (WD) - progenitor system: (WD+MS) or (WD+WD)? ‐ discovered in all types of galaxies - star-forming, elliptical, irregular, etc … ‐ used as cosmic standard candles M B = m B - 5 log 10 (D L ) - A B - 5 ➜ Rv = 1.0 ~ 2.5 ( R V = A V /(A B – A V ) ) to minimize the dispersion of Hubble diagram (e.g., Tripp+1998; Conley+2007; Phillips+2013) cf. Rv = 3.1 for the average extinction curvei n the Milky-Way (MW) 4-1. Extinction law towards Type Ia SNe Astier+2006 Phillips+1993 Riess+1996 light curve of SNe Ia

○ Other examples of Rv for SNe Ia ‐ average of ensembles of SNe Ia Rv = ‐ from obtained colors of SNe Ia in near-UV to near-infrared (NIR) Rv ~ 3.2 (Folatelli+2010) Rv = (e.g., Elisa-Rosa+2008; Kriscinuas+2007) ○ Extinction in nearby galaxies ‐ M 31 (Andromeda Galaxy) Rv = (e.g., Melchior+2000; Dong+2014) ‐ elliptical galaxies Rv = (Patil+2007) ➜ Rv is moderately low or normal 4-2. Other examples of reddening for SNe Ia Howell+2011

○ Type Ia SN 2014J ‐ discovered in M 82 (D ~ 3.5±0.3 Mpc) - closest SN Ia in the last thirty years - highly reddened (Av ~ 2.0 mag) ‐ reddening law is reproduced by CCM relation with Rv ~ 1.5 (Ammanullah+2014; Foley+2014; Gao+2015) 4-3. Peculiar extinction towards SN 2014J Amanullah+2014 Gao+2015, Li’s talk

〇 CCM relation (Cardelli, Clayton, Mathis 1989) R V : ratio of total-to- selective extinction R V = Av / E(B - V) = A V / (A B – A V ) A λ /A V = a(x) + b(x) / Rv where x = 1 / λ Data: Fitzpatrick & Massa (2007) ‐ steeper extinction curve (lower Rv) ➜ smaller grains ‐ flatter extinction curve (higher Rv) ➜ larger grains in our Galaxy Rv = R V,ave ~ 3.1 large size small size 4-4. How peculiar is SNe Ia extinction curves?

○ Origin of low Rv observed for SNe Ia ‐ odd properties of interstellar dust (e.g., Kawabata+2014; Foley+2014) ‐ multiple scattering by circumstellar dust (Wang 2005; Goobar 2008; Amanullah & Goobar 2011) 4-5. Low Rv: interstellar or circumstellar origin? absorption scattering SN Ia circumstellar dust shell of τ v ~ 1 infrared If there is a thick dust shell, we must detect thermal dust emission as infrared echoes Goobar (2008)

○ Near-infrared (NIR) observations ‐ no excess flux at JHK bands ‐ IR echo model (thin shell approximation) constrain the mass of dust for a given position of the dust shell (Maeda, TN+2015) ➜ conservative upper limits of optical depths in B band is τ B < ~0.1 ○ Spitzer observations ‐ no excess flux at 3.5/4.5 µm (Johansson+2015) ‐ upper limit of dust mass: ~10 -4 M sun ➜ optical depth τ << Near-infrared observations of SNe Ia Maeda+2015 Johansson+2015

4-7. Dust model for Rv = 1.5 CCM curve 〇 MRN dust model (Mathis, Rumpl, & Nordsieck 1977) - dust composition : silicate (MgFeSiO 4 ) & graphite (C) - size distribution : power-law distribution n(a) ∝ a^{-q} with q=3.5, a max = 0.24 μm, a min = μm Rv = 2.0 curve ➜ a max = µm, a min = µm Nozawa 2016, submitted

4-8. Dust models for Rv = 1.0 and 2.0 curve Rv = 1.5 curve ➜ a max = µm, a min = µm Rv = 1.0 curve ➜ a max = µm, a min = µm But, the values of Rv obtained from the MRN dust model are higher than Rv used for the CCM relation R V,CCM = 1.5 curve ➜ R V, dust = 1.72 R V,CCM = 1.0 curve ➜ R V, dust = 1.49 Nozawa 2016, submitted

4-9. Summary 1) Many studies (mainly SNe Ia cosmology) suggest that the Rv values toward SNe Ia are very low (Rv ~ 1-2.5), compared with Rv = 3.1 in our Galaxy 2) Non-detection of IR echoes towards SNe Ia indicates that the low Rv is not due to the circumstellar dust but due to the interstellar dust in the host galaxies 3) The CCM curves with Rv = 1-2 can be reasonably fitted by the power-law dust model (graphite/astronomical silicate) with a max = µm (instead of a max = 0.24 µm for Rv = 3.1)