R. A. Pitts et al. 1 49 th APS, Orlando, Florida, USA 12 November 2007 Progress in ITER relevant ELM exhaust physics at JET Presented by W.Fundamenski.

Slides:



Advertisements
Similar presentations
G. Arnoux (1/19) SEWG on transient heat loads Ljubljana, 02/10/2009 Heat load measurements on JET first wall during disruptions G. Arnoux, M. Lehnen, A.
Advertisements

Progress with PWI activities at UKAEA Fusion GF Counsell, A Kirk, E Delchambre, S Lisgo, M Forrest, M Price, J Dowling, F Lott, B Dudson, A Foster,
Alberto Loarte EU Plasma-Wall Interaction Task Force Meeting – CIEMAT – 10 – ITER Design Review Activities on Steady State and Transient Power.
ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
TFE Th Loarer – SEWG – 12 September Euratom Th Loarer V Philipps 2, J Bucalossi 1, D Brennan 3, J Brzozowski 4, N Balshaw 3, R Clarke 3, G Esser.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Thermal Load Specifications from ITER C. Kessel ARIES Project Meeting, May 19, 2010 UCSD.
Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.
Material Erosion and Redeposition during the JET MkIIGB-SRP Divertor Campaign A. Kirschner, V. Philipps, M. Balden, X. Bonnin, S. Brezinsek, J.P. Coad,
A. Kirk, 21 st IAEA Fusion Energy Conference, Chengdu, China, October 2006 Evolution of the pedestal on MAST and the implications for ELM power loadings.
Toroidally resolved measurements of ELMs in RMP and non-RMP H-mode discharges on DIII-D M.W. Jakubowski 1, T.E. Evans 3, C.J. Lasnier 4, O. Schmitz 2,
ELM Filament Propogation Measurements on MAST A. Kirk a, N. B. Ayed b, B. Dudson c, R. Scannel d (a) UKAEA Culham, (b) University of York, (c) University.
1/14 In/Out balance and time scales of ELM divertor heat load in JET and ASDEX Upgrade T.Eich 1, A.Kallenbach 1, W.Fundamenski 2, A.Herrmann 1, R.A. Pitts.
Alberto Loarte 10 th ITPA Divertor and SOL Physics Group Avila – Spain 7/10 – 1 – Update on Thermal Loads during disruptions and VDEs A. Loarte.
R Sartori - page 1 20 th IAEA Conference – Vilamoura Scaling Studies of ELMy H-modes global and pedestal confinement at high triangularity in JET R Sartori.
Centre de Recherches en Physique des Plasmas TF-E modellers meeting B. Gulejová6/5/ of 10 SOLPS5 simulations of Type I ELMing H-mode at JET Barbora.
R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Progress in ITER relevant exhaust physics at JET Presented by R. A. Pitts CRPP-EPFL,
R. A. Pitts et al., O-8 18 th PSI, Toledo, Spain 27 May 2008 The Impact of large ELMs on JET Presented by R. A. Pitts CRPP-EPFL, Switzerland, Association.
W. Fundamenski, IAEA FEC 2004, Vilamoura, Portugal1 Power Exhaust on JET: An Overview of Dedicated Experiments W.Fundamenski, P.Andrew, T.Eich.
Barbora Gulejová 1 of 10 PSI 2008 abstract 5/12/2007 SOLPS modelling of Type I ELMing H-mode on JET Barbora Gulejová, Richard Pitts, David Coster, Xavier.
H. D. Pacher 1, A. S. Kukushkin 2, G. W. Pacher 3, V. Kotov 4, G. Janeschitz 5, D. Reiter 4, D. Coster 6 1 INRS-EMT, Varennes, Canada; 2 ITER Organization,
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Recent JET Experiments and Science Issues Jim Strachan PPPL Students seminar Feb. 14, 2005 JET is presently world’s largest tokamak, being ½ linear dimension.
J.P. Coad 1 H Workshop, Salamanca 3 June 2008 Local deposition of 13C tracer at the JET MkII-SRP outer divertor J Paul Coad Hydrogen Workshop, Salamanca,
T.Eich 1 / 26 rehearsal for PFMC, Jülich ELM divertor heat loads in JET- ILW and full-W ASDEX Upgrade T.Eich, R.Scannel, B.Sieglin, G.Arnoux,
10th ITPA meeting on SOL & divertor physics, Avila, Spain, Jan 7-10, 2008 Arne Kallenbach 1/15 Prediction of wall fluxes and implications for ITER limiters.
1 Garching, 20/3 2009EFDA Fuelling Meeting A Ekedahl 1, M Goniche 1, G Granucci 2, J Mailloux 3, V Pericoli 4, V Petrzilka 5, K Rantamäki 6, JET-EFDA contributors,
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
H. Urano, H. Takenaga, T. Fujita, Y. Kamada, K. Kamiya, Y. Koide, N. Oyama, M. Yoshida and the JT-60 Team Japan Atomic Energy Agency JT-60U Tokamak: p.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
ELM Control Using External Perturbation Fields on JET Y Liang, JET-EFDA contributors Joint Pedestal/SOL ITPA Meeting Garching (7-10 May), Germany.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
TEC Trilateral Euregio Cluster 1 S. Brezinsek Spectroscopic determination of carbon erosion yields and the composition of chemically eroded molecular carbon.
ITPA DSOL meeting, Toronto W. Fundamenski9/11/2006 TF-E Introduction to ELM power exhaust: Overview of experimental observations W.Fundamenski Euratom/UKAEA.
1 Plasma Rotation and Momentum Confinement – DB ITPA - 1 October 2007 by Peter de Vries Plasma Rotation and Momentum Confinement Studies at JET P.C. de.
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
Photonic T removal techniques in the EU G Counsell 1, P Coad 1, C Grisolia 2, A. Semerok 3, A Widdowson 1 1 EURATOM/UKAEA Fusion Association, Culham Science.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,
T Loarer – TFE meeting – 20 February TORE SUPRA Association Euratom-Cea Gas Balance - fuel retention in JET T Loarer, J Bucalossi, D Brennan*, G.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
O-36, p 1(10) G. Arnoux 18 th PSI, Toledo, 26-30/05/2008 Divertor heat load in ITER-like advanced tokamak scenarios on JET G.Arnoux 1,(3), P.Andrew 1,
Heat Loading in ARIES Power Plants: Steady State, Transient and Off-Normal C. E. Kessel 1, M. A. Tillack 2, and J. P. Blanchard 3 1 Princeton Plasma Physics.
ERO modelling of Be erosion and light emission at JET ILW D.Borodin 1, M.Stamp, A.Kirschner 1, C.Björkas 1,2, S.Brezinsek 1, J.Miettunen 3, D.Matveev 1,
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
ASIPP, 24/ Modelling of near LH effects on the SOL, in view of extrapolation to ITER V. Petrzilka 1, G. Corrigan 2, P. Belo 3, A. Ekedahl 4, K.
Overview of recent work on carbon erosion, migration and long-term fuel retention in the EU-fusion programme and conclusions for ITER V. Philipps a Institute.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.
Dynamic fuel retention and release under ITER like wall conditions in JET V. Philipps 1, T. Loarer 2, M. Freisinger 1, H.G.Esser 1, S. Vartanian 2, U.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Y Andrew 1 (14) Transport and Confinement ITPA meeting October 2008 H-mode Access on JET Y Andrew and JET EFDA Contributors UKAEA- Fusion Transport.
Melting of Tungsten by ELM Heat Loads in the JET Divertor
Compatibility of high performance scenarios with ILW
Pedestal Confinement and Stability in JET-ILW ELMy H-modes
Generation of Toroidal Rotation by Gas Puffing
Pellet injection in ITER Model description Model validation
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Appreciate to have the opportunity
Presentation transcript:

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Progress in ITER relevant ELM exhaust physics at JET Presented by W.Fundamenski on behalf of JET Task Force E and JET EFDA Contributors Part of an invited talk by R. A. Pitts at the 49 th Annual Meeting of the APS-DPP, Orlando, Florida, US, November 2007

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 A. Alonso 1, P. Andrew 2, G. Arnoux 3, S. Brezinsek 4, M. Beurskens 5, J. P. Coad 5, T. Eich 6, G. Esser 4, W. Fundamenski 5, A. Huber 4, S. Grünhagen 7, B. Gulejova 8, S. Jachmich 9, M. Jakubowski 10, A. Kirschner 4, S. Knipe 5, A. Kreter 4, T. Loarer 3, J. Likonen 11, A. Loarte 12, E. de la Luna 1, J. Marki 8, M. Maslov 8, G. F. Matthews 5, V. Philipps 4, M. Rubel 13, E. Solano 1, M. F. Stamp 5, J. D. Strachan 14, D. Tskhakaya 15, A. Widdowson 5 and JET EFDA Contributors * 1 Associacion Euratom/CIEMAT para Fusion, Madrid, Spain 2 ITER Organization, Cadarache, France, 3 Association EURATOM-CEA, DSM-DRFC, CEA Cadarache, Saint Paul lez Durance, France 4 Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association, Trilateral Euregio Cluster, D Jülich, Germany 5 Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK 6 Max-Planck-Institut für Plasmaphysik, IPP-EURATOM Association, D Garching, Germany 7 FZ Karlsruhe, Postfach 3640, D Karlsruhe, Germany 8 CRPP-EPFL, Switzerland, Association EURATOM-Swiss Confederation 9 LPP, ERM/KMS, Association Euratom-Belgian State, B-1000, Brussels, Belgium 10 Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Germany 11 VTT Technical research Centre of Finland, Association EURATOM-Tekes, Finland 12 EFDA-Close Support Unit, Garching, Boltzmannstrasse 2, D Garching bei München, Germany 13 Association EURATOM-VR, Fusion Plasma Physics, Stockholm, Sweden 14 PPPL Princeton University, Princeton, NJ 0854, USA 15 University of Innsbruck, Institute for Theoretical Physics, Association EURATOM-ÖAW, A-6020 Innsbruck, Austria *See appendix of M. Watkins et al., Fusion Energy 2006 (Proc. 21st Int. Conf. Chengdu, 2006) IAEA Vienna (2006) with thanks to many co-authors

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 The problem with ELMs Material damage poses a limit on the maximum ELM size tolerable on ITER Current estimates indicate that ELM power fluxes (for CFC or W) must remain below ~0.5 MJm -2 at the ITER divertor targets This implies an ELM energy loss,  W ELM ~ 1 MJ  ~0.3% of stored energy in ITER Q DT = 10 burning plasma! This is lower than any ELM energy so far achieved  mitigation strategies required. BUT … JET Type I ELMs can approach 1 MJ  study the effects on first wall surfaces and edge plasma Important also in preparation for JET ITER-like wall and improved understanding of ELM SOL physics

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Large ELMs with low fueling Vertical targets, MarkIIHD div. Specific JET session I p = 3.0MA, B  = 3.0T, gas scan q 95 ~ 3.1,  95 ~ 0.25 Input energy ~195 MJ Energy Tile 3,7: 24.6, 70.1 MJ D  (inner) P TOT (MW) W DIA (MJ) T e,ped (keV) n e,ped (10 19 m -3 ) H 98Y Z eff (Brems) Time (s) #70226 – no gas fuelling R. A. Pitts et al., ITPA, Garching, 2007 Mostly NBI

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Large ELMs with low fueling Lowest fuelling cases at ITER relevant * ped W ELM /W ped ~ 0.2 for largest ELMs R. A. Pitts et al., ITPA, Garching, 2007 D  (inner) P TOT (MW) W DIA (MJ) T e,ped (keV) n e,ped (10 19 m -3 ) H 98Y Z eff (Brems) Time (s) #70226 – no gas fuelling ITER

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Target surface temperatures D  (inner) T max outer (ºC) Time (s) #70228 – no gas fuelling T max inner (ºC) Target surface temperatures from tangential view. Time resolution insufficient for power flux analysis Total wetted area ~1.0 m 2 (cf. ITER ~ 3.5 m 2 ) Inter-ELM power loads higher at outer than inner as usual Clear affect of surface layers on inner target (none on outer) Large ELMs:  T surf (inner) ~ 600ºC  T surf (outer) ~ 200ºC T surf far from bulk sublimation Inner Outer ~600ºC ~200ºC #70228 J. Marki, T. Eich

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Radiation during large ELMs Time (s) #70225, low fuelling D   (inner) W DIA (MJ) P RAD (MW)  E rad (MJ) 0.58 MJ 1.08 MJ 0.85 MJ 1.29 MJ Strong in-out asymmetry in ELM induced radiation for high  W ELM  probably due to layers on inner targets and preferential inboard deposition of ELM energy A. Huber et al., EPS 2007

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 In-out ELM radiation asymmetry W ELM = 0.85 MJ W ELM = 0.45 MJ First ELM spike only For  W ELM 0.6 MJ radiation “spills over” separatrix – in-out radiation asymmetry reduced > ~  E RAD /  W ELM ~ 0.5 if  W ELM 0.6 MJ Evidence for a break at larger  W ELM < ~ R. A. Pitts, ITPA 2007, A. Huber et al., EPS 2007 Up to 70%  W ELM radiated

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 ELMs can move carbon Non-linear dependence of carbon erosion on ELM energy  thermal decomposition of surface layers and favourable geometry rapidly increases QMB deposition A. Kreter, H. G. Esser et al., submitted to PRL Explains high deposition rates on water-cooled louvres during 1997 JET DT experiments  high T-retention

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Main wall ELM filaments W. Fundamenski, M. Jakubowski, ITPA Garching May 2007, P. Andrew et al., EPS 2007 #66515  W ELM ~ 200 kJ t = 7.6 s Exp. time 300  s Frame time 7.8 ms New wide angle IR camera diagnostic (E. Gauthier et al., CEA) using ITER-like front mirrors. 640x512 pixel FPA, max. full frame rate 100 Hz ELM exposure superimposed on ambient background Difference frame: ELM – previous ELM-free frames

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Filament footprint field aligned  = 22 o,35 o Filament IR footprint in main chamber closely aligned to pre-ELM field lines Mode number (in this case) n ~360/  = More cases  n = Field aligned filaments also seen at upper dump plates: crude mode analysis gives n ~ , 57 s

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 How much ELM energy to walls? Main chamber IR camera too slow to follow single ELMs and filaments very asymmetric toroidally and poloidally 68193, 57 s Make energy balance for a single outboard poloidal limiter during H-mode phase, assume: Only ELMs can deposit energy on limiters No energy to upper dump plates No energy deposited in compound phases Same energy on 16 limiters

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 D  (inner) Time (s) Temp. (ºC) Energy per tile (kJ) #70226 How much ELM energy to walls? Main chamber IR camera too slow to follow single ELMs and filaments very asymmetric toroidally and poloidally 68193, 57 s s s Make energy balance for a single outboard poloidal limiter during H-mode phase, assume: Only ELMs can deposit energy on limiters No energy to upper dump plates No energy deposited in compound phases Same energy on 16 limiters ∑E tile (15 tiles)

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Wall loading and ELM size 68193, 57 s Pulse No.  gas (10 22 e - /s) No. ELMs(MJ) (kJ) I p = 3.0 MA, B  = 3.0 T, gas scan. Separatrix-midplane outer wall gap fixed at ~5.0 cm.  W ELM estimated for first ELM peak only Larger ELMs deposit more energy on outboard main chamber surfaces. How does this compare with theory? Pulse No.  gas (10 22 e - /s) No. ELMs(MJ) (kJ)

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Compare with filament model Filament parallel energy loss model (W. Fundamenski, R. A. Pitts, PPCF 48 (2006) 109)  W/W 0 = 9.4% at limiter radius, cf. Experiment = 8.8% Excellent agreement given inherent approximations  ELMs with 500 kJ deposit ~10% of their energy on the main chamber limiters (for separatrix-wall gap ~ 5 cm) > ~ Assume mid- pedestal params T e,0 = T i,0 ~ 800 eV n e,0 ~ 3.0  m -3  ped ~ 4 cm v ELM = 600 ms -1

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Conclusions –JET can access ELM conditions which match new ITER specifications (  W ELM ~ 1 MJ) in pulses at I p = 3.0 MA with upstream p ~ 5 mm and divertor wetted area ~1.0 m 2 –Strong in-out divertor radiation asymmetry – up to 70% of the ELM energy drop can be radiated, mostly in the divertor volume. –Evidence that thermal decomposition of inner divertor surface layers increases radiation but  T surf provoked by largest ELMs relatively modest (~ few 100 ºC ) –ELM filaments seen clearly at main chamber limiters but only carry ~10% of  W ELM for largest ELMs ( > 0.5 MJ with fixed wall gap (~5 cm). –Fraction of energy to the wall in good agreement with a parallel loss model of ELM filament evolution

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Reserve slides

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Large ELMs with low fueling Large ELMs have large drop in T e,ped New data populate scaling beyond  T e,ELM /T e,ped = 0.4 R. A. Pitts et al., ITPA, Garching, 2007 D  (inner) P TOT (MW) W DIA (MJ) T e,ped (keV) n e,ped (10 19 m -3 ) H 98Y Z eff (Brems) Time (s) #70226 – no gas fuelling

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Filaments in fast visible light #70228 D  (inner) divertor W DIA (MJ) Time (s) Frame time 33  s, main chamber view – filament- wall interaction seen during divertor D  rise. Courtesy of J. A. Alonso, CIEMAT  W ELM = 804 kJ  E RAD = 537 kJ

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Parallel ELM transport Significant progress being made in realistic parallel transport modelling of ELM pulse with the BIT1 PIC code Treat ELM as a square wave pulse launched upstream over time  ELM with specified T ped, n ped  W ELM ~  ELM 3n ped T ped 2  L pol RdR Plasma expelled into 1D SOL with cosine distribution centred on midpoint between targets. B = const., inclined targets (~5 º ) D. Tskhakaya et al., EPS 2007  ELM = 200  s Post ELM 150  s T, n N particles = 0.8 – 5.0  106, N cells = 6000 High resolution, low noise T ped = 0.5 – 5 keV n ped = 0.15 – 15  m -3  W ELM = – 2.5 MJ 2L || = 80 m dR

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Test case: PIC vs. expt. Clear separation of electron (~2  s) and ion (~100  s) transit times Assumed “ELM duration” 200  s Example:  W ELM = 400 kJ T ped = 1.5 keV n ped = 5  m -3 ee ii  ELM D. Tskhakaya PIC ONLY

R. A. Pitts et al th APS, Orlando, Florida, USA 12 November 2007 Test case: PIC vs. expt. D. Tskhakaya, T. Eich, R. A. Pitts IR data obtained at outer target (no layers) from coherent average of 20 similar ELMs with ~ 310 ± 66 kJ Time resolution artifically enhanced to 50  s Good agreement in shape of pulse rise Width a question of time and shape of ELM pedestal loss PIC overestimates expt. by ~ factor 5 Factor ~2 due to known in-out ELM loading asymmetry Factor ~2 due to 1D nature of PIC Reasonable agreement given how  W ELM specified in the code PIC + EXPT.