I. Georgantopoulos NATIONAL OBSERVATORY OF ATHENS A. Georgakakis, O. Giannakis, S. Kitsionas, A. Akylas, D. Gaga, M. Plionis, V. Kolokotronis, S. Basilakos.

Slides:



Advertisements
Similar presentations
The evolution of SMBH from Hard X-ray surveys Andrea Comastri (INAF – Osservatorio di Bologna – Italy) The XRB as a tracer of SMBH mass density Hard X-ray.
Advertisements

Tracing cosmic accretion through the XMM-Newton Medium Survey (XMS) Xavier Barcons On behalf of the AXIS/XMS/SSC team.
Unresolved X-Ray Sources in Intermediate Redshift Cluster Fields Unresolved X-Ray Sources in Intermediate Redshift Cluster Fields S. Fawcett, A. Hicks,
Radio and X-ray emission in radio-quiet quasars Katrien C. Steenbrugge, Katherine M. Blundell and Zdenka Kuncic Instituto de Astronomía, UCN Department.
Supernova Remnants in the ChASeM33 X-ray Survey of M33 Knox S. Long, William P. Blair, P. Frank Winkler, and the ChASeM33 team.
Statistical analysis of the X-ray emission properties of type-1 AGN in the XMM-2dF Wide Angle Survey Silvia Mateos Leicester University (UK) Leicester.
COSMOS Kyoto meeting May 2005 Obscured AGN in the COSMOS field Andrea Comastri (INAF – Bologna) on behalf of the XMM-COSMOS team.
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
(Obscured) Supermassive Black Holes Ezequiel Treister (IfA) Meg Urry, Shanil Virani, Priya Natarajan (Yale) Credit: ESO/NASA, the AVO project and Paolo.
Normal Galaxies Sample From 2dF-XMM Wide Angle Survey Jonathan Tedds, Silvia Mateos, Mike Watson, Matthew Page, Francisco Carrera, Mirko Krumpe, Jacobo.
Probing the X-ray Universe: Analysis of faint sources with XMM-Newton G. Hasinger, X. Barcons, J. Bergeron, H. Brunner, A. C. Fabian, A. Finoguenov, H.
AGN and Quasar Clustering at z= : Results from the DEEP2 + AEGIS Surveys Alison Coil Hubble Fellow University of Arizona Chandra Science Workshop.
Boston, November 2006 Extragalactic X-ray surveys Paolo Tozzi Spectral analysis of X-ray sources in the CDFS.
The remarkable soft X-ray emission of the Broad Line Radio Galaxy 3C445 BLRG in the Unification Scheme of AGN: Is the circumnuclear gas in BLRG different.
X-ray Bright, Optically Normal Galaxies - XBONGS Forman, Anderson, Hickox, Jones, Murray, Vikhlinin, Kenter and the Bootes Team Bootes Survey 9.3 sq. degrees.
The spatial clustering of X-ray selected AGN R. Gilli Istituto Nazionale di Astrofisica (INAF) Osservatorio Astronomico di Bologna On behalf of the CDFS.
Ringberg Meeting, Apr 05 2dF Spectroscopic Identification of a Southern XMM-Newton Serendipitous Sample Jonathan Tedds (Leicester), Mat Page (MSSL) & XMM-Newton.
“false-color” keV X-ray image of the Bootes field A large population of mid-infrared selected, obscured AGN in the Bootes field Ryan C. Hickox Harvard-Smithsonian.
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
Obscured and unobscured growth of Super-massive Black Holes Francisco J. Carrera, X. Barcons, J. Bussons, J. Ebrero, M. Ceballos, A. Corral (IFCA, CSIC-UC,
Space Density of Heavily-Obscured AGN, Star Formation and Mergers Ezequiel Treister (IfA, Hawaii Ezequiel Treister (IfA, Hawaii) Meg Urry, Priya Natarajan,
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
The Clustering of AGN Using Photometric Redshifts Elias Koulouridis Antonis Georgakakis National Observatory of Athens.
The XMM-Newton hard band wide angle Survey Nicoletta Carangelo and Silvano Molendi (IASF-MI(CNR)) Epic Consortium Meeting Palazzo Steri, Palermo,
How to start an AGN: the role of host galaxy environment Rachel Gilmour (ESO Chile & IfA, Edinburgh) Philip Best (Edinburgh), Omar Almaini & Meghan Gray.
X-ray Surveys with Space Observatory Khyung Hee University Kim MinBae Park Jisook.
X-ray spectroscopy Workshop – Cambridge (MA, U.S.A.) - Thursday, July 12 th 2007 On the origin of soft X-rays in obscured AGN Stefano Bianchi Matteo Guainazzi.
The 2MASS Red AGN Survey R. Cutri, B. Nelson, D. Kirkpatrick (IPAC/Caltech) M. Skrutskie (U. Virginia) P. Francis (ANU/MSSSO) P. Smith. G. Schmidt, D.
Obscured AGN and XRB models Andrea Comastri (INAF-OABologna-Italy) Roberto Gilli (INAF-OABologna-Italy) F. Fiore (INAF-OARoma-Italy) G. Hasinger (MPE-Garching-
(Obscured) Supermassive Black Holes Ezequiel Treister (IfA) Meg Urry, Shanil Virani, Priya Natarajan (Yale), Julian Krolik (JHU), Eric Gawiser (Rutgers),
X-ray astronomy 7-11 September 2009, Bologna, Italy XMM-Newton slew survey hard band sources XMM-Newton slew survey hard band sources R.D. Saxton a, A.M.
Swift/BAT Census of Black Holes Preliminary results in Markwardt et al ' energy coded color.
The nature of X-ray selected Broad Absorption Line Quasars Alex Blustin With Tom Dwelly (Southampton), Mat Page (UCL-MSSL)‏ UCL-MSSL and IoA, Cambridge.
The XMM SSC Bright Source sample * November 2006 Report to the SSC XID R. Della Ceca A. Caccianiga T. Maccacaro P. Severgnini F. Cocchia * on behalf of.
Properties of the point-like sources in the XMM-LSS field Olga Melnyk and XMM-LSS collaboration N. Clerc, L. Chiappetti, A. Elyiv, P.Gandhi, E.Gosset,
The Evolution of AGN Obscuration
X-ray clues on the nature of sub-mm galaxies I.Georgantopoulos INAF/OABO A Comastri INAF/OABO E. Rovilos MPE.
MMT Science Symposium1 “false-color” keV X-ray image of the Bootes field Thousands of AGNs in the 9.3 square degree Bootes field * X-ray and infrared.
The Evolution of AGN Obscuration
University of Leicester, UK X-ray and Observational Astronomy (XROA) Group Estelle Pons - The X-ray Universe June 2014.
Revealing X-ray obscured Quasars in SWIRE sources with extreme MIR/O Giorgio Lanzuisi Fabrizio Fiore Enrico Piconcelli Chiara Feruglio Cristian Vignali.
X-ray emission properties of BLAGN in the XMM-2dF Wide Angle Survey S. Mateos, M.G. Watson, J. A. Tedds and the XMM-Newton Survey Science Centre Department.
Lockman Hole (XMM PV) PN CCD (MPE Garching) MOS1 CCD (Leicester U) PN CCD (MPE Garching) MOS1 CCD (Leicester U) PV Observations ksec.
Compton-thick AGN in the CDFN I. Georgantopoulos NOA A. Akylas NOA A. Georgakakis NOA M. Rovilos MPE M. Rowan-Robinson Imperial College.
The NuSTAR Extragalactic Survey: A 1 st Look at the Distant High-Energy X-ray Background D.R. Ballantyne (Georgia Tech) on behalf of M. Ajello, D. Alexander,
HST Workshop Bologna Jan 31, 2008 Heavily obscured SMBH at high redshift Andrea Comastri INAF - OABologna C. Vignali, R. Gilli, K. Iwasawa, F. Civano,
X-ray spectroscopy of bright AGN GiorgioMatt & Stefano Bianchi Giorgio Matt & Stefano Bianchi (Dipartimento di Fisica, Università Roma Tre) (Dipartimento.
Observations of Obscured Black Holes
Obscured and unobscured growth of Super-massive Black Holes from the XMM-Newton Medium Survey Francisco J. Carrera, X. Barcons, J. Bussons, J. Ebrero,
Andrii Elyiv and XMM-LSS collaboration The correlation function analysis of AGN in the XMM-LSS survey.
EROSITA + group meeting, Ringberg, February 2008 z>3 QSOs in XMM-COSMOS: lessons for eROSITA Marcella Brusa (MPE) with help from: A. Comastri M. Salvato,
The Evolution of AGN Obscuration Ezequiel Treister (ESO) Meg Urry (Yale) Julian Krolik (JHU)
21 Aug 2014HEAD Meeting Chicago Revealing the heavily obscured AGN population with radio selection Wilkes, Kuraszkiewicz, Atanas, Haas, Barthel, Willner,
Finding Black Hole Systems in Nearby Galaxies With Simbol-X Paul Gorenstein Harvard-Smithsonian Center for Astrophysics.
Robust identification of distant Compton-thick AGNs IR AGN Optical AGN Need for deep optical-mid-IR spectroscopy: multiple lines of evidence for intrinsic.
The Black Hole-Galaxy Evolution Connection Ezequiel Treister Einstein Fellow IfA, Hawaii IfA, Hawaii Credit: ESO/NASA, the AVO project and Paolo Padovani.
A deep view of the iron line and spectral variability in NGC 4051 James Reeves Collaborators:- Jane Turner, Lance Miller, Andrew Lobban, Valentina Braito,
AGN / Starbursts in the very dusty systems in Bootes Kate Brand + the Bootes team NOAO Lijiang, August 2005.
The History of Active Galaxies A.Barger, P. Capak, L. Cowie, RFM, A. Steffen, and Y. Yang Active Galaxies (AKA quasars, Seyfert galaxies etc) are radiating.
6dF Workshop, May MASS Selected AGN with 6dF Paul Francis (ANU) Roc Cutri, Brant Nelson, David Kirkpatrick (IPAC/CALTECH) M. Skrutskie (U. Virginia)
The XMM Distant Cluster Project: Survey limits and Pilot Survey Georg Lamer A. Schwope, V. Hambaryan, M. Godolt (AIP) H. Böhringer, R. Fassbender, P. Schücker,
Multiwavelength AGN Number Counts in the GOODS fields Ezequiel Treister (Yale/U. de Chile) Meg Urry (Yale) And the GOODS AGN Team.
The Radio Properties of Type II Quasars PLAN Type II quasars Motivations Our sample Radio observations Basic radio properties Compare our results with.
Science Operations & Data Systems Division Research & Scientific Support Department Page 1 XMM-Newton Feedback between circumnuclear gas and AGN: implications.
New XMM-Newton deep Survey in the Lockman Hole Vincenzo Mainieri MPE Workshop on AGN Surveys, Puebla, June 23- July 11, 2003 Guenther Hasinger Hans Boehringer.
Why is the BAT survey for AGN Important? All previous AGN surveys were biased- –Most AGN are ‘obscured’ in the UV/optical –IR properties show wide scatter.
Seeking type 2 QSO amongst bright X-ray selected EXOs Agnese Del Moro University of Leicester, UK In collaboration with: M.G. Watson (UoL), S. Mateos (UoL),
Andrea Comastri (INAF- Oss. Astr. Bologna)
The spectral properties of Galactic X-ray sources at faint fluxes
Black Holes in the Deepest Extragalactic X-ray Surveys
Presentation transcript:

I. Georgantopoulos NATIONAL OBSERVATORY OF ATHENS A. Georgakakis, O. Giannakis, S. Kitsionas, A. Akylas, D. Gaga, M. Plionis, V. Kolokotronis, S. Basilakos G.C. Stewart, M.G. Watson University of Leicester E. Hatziminaoglou European Southern Observatory T. Shanks, M. Vallbe University of Durham B.J. Boyle AAO

Overview XMM-Newton/2df survey NORTH 9 adjacent fields, 5-10 ksec exposure, ~2 deg2 200 sources in keV in areas covered by both the 2-df and SDSS surveys The survey main goals are : a. Nature of various classes of AGN b. groups and poor clusters of galaxies (Basilakos et al MNRAS submitted) c. Galaxies (Georgakakis et al MNRAS astro-ph/)

Motivation (why bother ?) 1.Explore the bright X-ray sky especially at hard energies where the ASCA and BeppoSAX surveys lack spatial resolution Bridge the gap between the Chandra surveys and bright fluxes 2. Further explore the soft X-ray sky. With a 10 ksec exposure we reach ~3x10-15 (0.5-2 keV) similar to the PSPC exposure in the LH (with better spatial positions and broad band spectra) 3.Find BRIGHT NEARBY counterparts of the enigmatic sources detected in the deep Chandra fields.

Introduction Chandra surveys have shown that the X-ray background consists of various classes of sources: 1. QSOs 2. Obscured AGN 3. Optically ‘passive’ galaxies 4. Optically faint sources 5. Star-forming galaxies at very faint fluxes (Classes 3,4 may take into account the scarcity of obscured AGN) The nature of these new populations is hard to explore mainly due to the fact that these are quite faint ROSAT showed that the soft (0.5-2 keV) XRB is dominated by BL AGN In harder energies (2-10 keV) the logN-logS shows an excess of sources Relative to the ROSAT logN-logS (obscured AGN ?). Couldn’t tell

Outstanding issues What is the nature of ‘passive’ X-ray galaxies (XBONG) ? Can the optically faint sources be obscured AGN at high z ? Where are the type-1.9/2 QSOs ? (only 3 detected in Chandra surveys) A number of Type-1 QSOs present large amounts of absorption ? The last two points present great interest for AGN unification models (and XRB population synthesis models)

Survey Description 18 shallow 5-10 ksec pointings in the NGP/SGP covering ~4 deg2. WHY THERE ? Extended optical follow-up : Spectroscopic 2-df B<21 QSOs (NGP/SGP) Photometric B=22.5, spectroscopic by the SDSS (NGP) ADJACENT fields They can be observed in a single 2-df exposure to go fainter

NGP details keV keV (>6σ) with optical c’parts p>98.5% with opt. C’parts at p<98.5% No opt. C’parts down to B= Spectroscopic Redshifts 2-df/SDSS/Deeper 2-df 23 4Photometric Redshifts 2 sources in the 2-8 keV catalogue only 13 sources in the soft keV catalogue Hence the keV total catalogue gives a fair representation of the X-ray populations What to remember: Spectroscopic Follow-up largely incomplete (possibly biased) Assigning probabilities helps to reject the chance coincidences

logN-logS At these fluxes about 50% of the XRB is resolved in both bands Therefore our objects are typical of those making the XRB

The fx/fo diagram Dominated by AGN (morphology suggests both nearby and distant AGN) Some galaxies are observed with low fx/fo Spectra: X BL AGN NL/ABS Galaxy Morphology:  Galaxy  Star unclassified morph  Low prob keV

Optical Ids 2-df/SDSS and deeper AAT/2-df spectroscopy Vast majority in the keV sample associated with broad-line AGN Type QSO/Sy NELG/Gal.105 Star 52 No-ID

Photometric Redshifts Using the Code of Hatziminaoglou et al. (1999) It does not work for extended objects where the colours are contaminated by the galaxy Object selection: 1. Stellar 2. High fx/fo 70% of these have Dz<0.3 (Kitsionas et al. 2003)

The Redshift Distribution Excess number of sources at low Redshift (even when we take into account only the type-1) Blue= type-2 Red= type-1 Green=Photom keV

2-8 keV

The 0.5-2/2-8 hardness ratios Large columnns are observed, much higher than those encountered in type-1. Still these are lower than those predicted by population synthesis models keV 2-8 keV

0.5-8 keV The column density histogram Two peaks with Galactic and moderate (logN_H~21.5) column densities Surprisingly, the galaxies have A lower N_H than the point sources. Things get worse considering That the point sources are further Away and thus that the rest-frame N_H will be even larger

0.5-8 keV Spectra: X BL AGN NL/Galaxy Morphology:  Galaxy  Star Most galaxies are red but these are not necessarily hard ie there is not a simple picture where we find many Nearby Obscured AGN

Where are the type QSOs ? Only local type-2 AGN detected so far exception is RXJ at z=2.35 already discovered by ROSAT (Almaini et al. 1995, Georgantopoulos et al. 1999)

0.5-8 keV 2-8 keV The keV sample is dominated by the blue AGN. In the hard band red galaxies and blue AGN play equal roles The colour-colour diagram easily picks out candidate type-2 AGN (Note that the HR of the red stellar objects is not hard)

Type-1 QSOs with large N_H

Correlation with redshift also found by Reeves & Turner 2000 (but logN_H~21 ) Corrected N_H for redshift Population synthesis models predict 2/3 logN_H> cgs 2-10 keV

An Example at z=0.8 N_H= 3 (+-2)x10^21 cm-2 Photon index =1.9 fixed

Implications for AGN unification models The apparent scarcity of type-2 AGN but mainly the observation of type-1 AGN with large amounts of X-ray absorption could possibly suggest that: At high redshifts Dust cannot survive but neutral gas can. Dust sublimates in the strong radiation field ? sublimation radius = 0.2 pc for L~10 45 But then the X-ray absorbing gas must avoid ionization For 0.2 pc, L~10 45 the ionization constant is relatively neutral ξ =1 for densities n>10 9 cm-3 Dust coagulation is an alternative

Optically passive galaxies Lx> for all 3 galaxies N_H=0 Photon index=1.9 fixed Cf Severgnini et al. in press

Incompleteness of UVX surveys Not significant as far as the colour selection is concerned The optical extension may be a far bigger problem

Summary Large number of sources at low redshift (even more pronounced at hard energies see Jahoda et al. 1991, Lahav et al. 1993) There is an apparent scarcity of absorbed (narrow-line) AGN at high redshift (same in IR wavelengths) Instead there is a number of type-1 QSOs with large column densities These have interesting implications for unification models. Dust sublimates but the gas remains neutral and hence absorbs X-rays ? No significant incompleteness of optical UVX surveys found due to colour selection. Type-1 AGN are many more than type-2 ?

Galaxies How we find them: 1.Objects with log(fx/fopt)<-1 2.Extended in the optical 3.Additional criterion hardness ratio 2-4 galaxies in ALL 18 fields Z=

Galaxies are quite rare: One would need tens Of XMM fields to form a decent sample

Another way of determining the properties of galaxies is by using stacking analysis (>200 2df galaxies in our fields z~0.1)

Extend at higher redshifts using radio galaxies Z~0.4