Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,

Slides:



Advertisements
Similar presentations
,, Seismic Protection of Benchmark Cable-Stayed Bridge using Hybrid Control Strategy.
Advertisements

2002 Control of a Seismically Excited Cable-Stayed Bridge Employing a Hybrid Control Strategy ,
Optimal placement of MR dampers
Scissor-Jack-Damper System for Reduction of Stay Cable
ADVANCED DYNAMIC TESTING TECHNIQUES IN STRUCTURAL ENGINEERING by Andrei M Reinhorn Xiaoyun Shao CIE 616 FALL 2004.
MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Konstantinos Agrafiotis
Robust control Saba Rezvanian Fall-Winter 88.
K.N.Toosi University of Technology 1. 2  The Interconnection of two subsystems.
Fractional Order LQR for Optimal Control of Civil Structures Abdollah Shafieezadeh*, Keri Ryan*, YangQuan Chen+ *Civil and Environmental Engineering Dept.
F.B. Yeh & H.N. Huang, Dept. of Mathematics, Tunghai Univ Nov.8 Fang-Bo Yeh and Huang-Nan Huang Department of Mathematic Tunghai University The 2.
Day 2. Lecturers: H.-J. Jung, H. Myung, KAIST, Korea Assistants: S.H. Park, D.D. Jang, KAIST, Korea Asia-Pacific Student Summer School on Smart Structures.
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
1 Efficient Mode Superposition Methods for Non-Classically Damped System Sang-Won Cho, Graduate Student, KAIST, Korea Ju-Won Oh, Professor, Hannam University,
In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced.
Semi-active Management of Structures Subjected to High Frequency Ground Excitation C.M. Ewing, R.P. Dhakal, J.G. Chase and J.B. Mander 19 th ACMSM, Christchurch,
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
Computational Structural Engineering Institute Autumn Conference 2002 Oct , 2002 VIBRATION CONTROL OF BRIDGE FOR SERVICEABILITY Jun-Sik Ha 1),
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
Hong-Ki Jo 1), Man-Gi Ko 2) and * In-Won Lee 3) 1) Graduate Student, Dept. of Civil Engineering, KAIST 2) Professor, Dept. of Civil Engineering, Kongju.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
*Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee *Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee Structural Dynamics & Vibration Control Lab. Structural Dynamics.
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Advanced Science and Technology Letters Vol.32 (Architecture and Civil Engineering 2013), pp Development.
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 A Comparative Study on Aseismic Performances of Base Isolation Systems for Multi-span Continuous.
1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
1 Artificial Neural Networks for Structural Vibration Control Ju-Tae Kim: Graduate Student, KAIST, Korea Ju-Won Oh: Professor, Hannam University, Korea.
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
* In-Won Lee 1), Sun-Kyu Park 2) and Hong-Ki Jo 3) 1) Professor, Department of Civil Engineering, KAIST 2) Professor, Department of Civil Engineering,
Speaker : Yunjeong Son Master’s Course, Hongik University
Probabilistic seismic hazard assessment for the pseudo-negative stiffness control of a steel base-isolated building: A comparative study with bilinear.
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
1 지진시 구조물의 지능제어 기법 Intelligent Control of Structures under Earthquakes 김동현 : 한국과학기술원 토목공학과, 박사과정 이규원 : 전북대학교 토목공학과, 교수 이종헌 : 경일대학교 토목공학과, 교수 이인원 : 한국과학기술원.
University of Illinois Contribution Amr S. Elnashai Sung Jig Kim Curtis Holub Narutoshi Nakata Oh Sung Kwon Seismic Simulation and Design of Bridge Columns.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
Dynamic Analysis of Structures by
년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
Feasibility of Using Simple Adaptive Control Strategy for Dynamic Bridge Response Under Stiffness Variation. Rachel W. Soares, Luciana R. Barroso, Omar.
KAIST-Kyoto Univ. Joint Seminar
중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 고차 민감도 해석
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Robust Hybrid Control System
Robust Hybrid Control System
A Survey on State Feedback AMD Control
a Bang-Bang Type Controller
Control of a Hybrid System using a -Synthesis Method
Presentation transcript:

Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor, Sejong Univ., Korea Woo-Hyun Yoon, Professor, Kyungwon Univ., Korea In-Won Lee, Professor, KAIST, Korea The Third International Workshop on Advanced Smart Materials and Smart Structures Technology

Smart Structures Technology Lab., UIUC 2 Introduction Robust hybrid control system Numerical examples Conclusions Contents

Smart Structures Technology Lab., UIUC 3 Introduction Hybrid control system (HCS)  A combination of passive and active control devices Passive devices: insure the control system robustness Active devices: improve the control performances  The overall system robustness may be negatively impacted by active device or active controller may cause instability due to small margins.

Smart Structures Technology Lab., UIUC 4 Objective  Apply a hybrid control system for vibration control of a seismically excited cable-stayed bridge  Apply a  -synthesis method to improve the controller robustness

Smart Structures Technology Lab., UIUC 5 Robust Hybrid Control System (RHCS) Control devices  Passive control devices Lead rubber bearings (LRBs) Design procedure: Ali and Abdel-Ghaffar (1995) Bouc-Wen model

Smart Structures Technology Lab., UIUC 6  Active control devices Hydraulic actuators (HAs) An actuator capacity has a capacity of 1000 kN. The actuator dynamics are neglected.

Smart Structures Technology Lab., UIUC 7 Control algorithm:  -synthesis method where : structured singular value : transfer function of closed-loop system : perturbation  Cost function (1)  Advantages Combine uncertainty in the design procedure Guarantee the stability and performance (robust performance)

Smart Structures Technology Lab., UIUC 8  Frequency dependent filters Kanai-Tajimi filter (2)

Smart Structures Technology Lab., UIUC 9 High-pass and low-pass filters (3), (4)

Smart Structures Technology Lab., UIUC 10 Additive uncertainty filter (5) Multiplicative uncertainty filter (6)

Smart Structures Technology Lab., UIUC 11 Block diagram of robust hybrid control system Bridge Model Sensor  -synthesis method HA LRB MUX

Smart Structures Technology Lab., UIUC 12 Analysis model  Bridge model Bill Emerson Memorial Bridge · Benchmark control problem · Located in Cape Girardeau, MO, USA · 16 shock transmission devices (STDs) are employed between the tower-deck connections. Numerical Examples

Smart Structures Technology Lab., UIUC 13 Configuration of control devices (LRBs+HAs) m350.6 m m

Smart Structures Technology Lab., UIUC 14 PGA: 0.348g PGA: 0.143g PGA: 0.265g  Historical earthquake excitations

Smart Structures Technology Lab., UIUC 15 Analysis results  Control performances Displacement under El Centro earthquake (a) STDs(b) RHCS

Smart Structures Technology Lab., UIUC 16 Deviation of cable tension under El Centro earthquake (a) STDs(b) RHCS

Smart Structures Technology Lab., UIUC 17 Shear force of tower under El Centro earthquake (a) STDs(b) RHCS

Important responses of bridge El Centro Deck Dis.Deck Shear Base Mom. Deviation of Cable Tension

Smart Structures Technology Lab., UIUC 19  Controller robustness The dynamic characteristic of as-built bridge is not identical to the numerical model. There are large differences at high frequencies between evaluation and design models. There is a time delay of actuator introduced by the controller dynamics and A/D input and D/A output conversions.  Robust analysis should be performed to verify the applicability of the control system.

Smart Structures Technology Lab., UIUC 20 where: nominal stiffness matrix : perturbed stiffness matrix : perturbation amount (  5,  10,  15,  20%) Stiffness matrix perturbation Mass matrix perturbation · Additional snow loads (97.7 kg/m 2, UBC) are added to the deck. where: time delay : time delay amount : sampling time (0.02 sec) Time delay of actuator (7) (8)

Smart Structures Technology Lab., UIUC 21 J 1 /J 7 : Peak/Normed base shear; J 2 /J 8 : Peak/Normed shear at deck level J 3 /J 9 : Peak/Normed overturning moment; J 4 /J 10 : Peak/Normed moment at deck level J 5 /J 11 : Peak/Normed cable tension deviation; J 6 : Peak Deck dis. at abutment` Stiffness perturbation w/o snow loadw/ snow load · Cable tension deviation (J 5, J 11 ) is more sensitive. · Deck dis. (J 6 ) is relatively insensitive. · Normed cable tension deviation (J 11 ) is varied more than 100% when there are -20% stiffness perturbation with snow load under Gebze earthquake.

Smart Structures Technology Lab., UIUC 22 Deviation of cable tensions Deviation of tension of cable no. 10 · However, the cable tension is well within the bounds and dies out after seismic event.

Smart Structures Technology Lab., UIUC 23 Time delay w/o snow loadw/ snow load J 1 /J 7 : Peak/Normed base shear; J 2 /J 8 : Peak/Normed shear at deck level J 3 /J 9 : Peak/Normed overturning moment; J 4 /J 10 : Peak/Normed moment at deck level J 5 /J 11 : Peak/Normed cable tension deviation; J 6 : Peak Deck dis. at abutment` · Deck shear and dis. (J 2,J 6,J 8 ) is more sensitive. · Variation is much less than compare to stiffness perturbation.

Smart Structures Technology Lab., UIUC 24 Stiffness perturbation and time delay w/o snow loadw/ snow load · The effect of stiffness perturbation is larger than time delay. · As the stiffness perturbation increases, the effect of time delay decreases.

Smart Structures Technology Lab., UIUC 25 Additional earthquakes · Chi-Chi (1999) – PGA = 0.42g > design PGA · Hachnohe (1968) – PGA = 0.23g < design PGA Chi-Chi Hachinohe

Smart Structures Technology Lab., UIUC 26 Hybrid system controlled by a  -synthesis method  shows similar performance with conventional one  has excellent robustness without loss of control performances  could be proposed as an improved control strategy for a seismically excited cable-stayed bridges containing many uncertainties Conclusions

Smart Structures Technology Lab., UIUC 27 Thank you for your attention! Acknowledgements This research was supported by the Korea Research Foundation (Grant no. KRF D00169) and author also acknowledges NSF for partial travel support.