Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv:0910.1139 Reviews: Talk online: sachdev.physics.harvard.edu arXiv:0901.4103.

Slides:



Advertisements
Similar presentations
Gauge/gravity and condensed matter
Advertisements

Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Holographic Superconductors with Higher Curvature Corrections Sugumi Kanno (Durham) work w/ Ruth Gregory (Durham) Jiro Soda (Kyoto) arXiv: , to.
Friedel Oscillations and Horizon Charge in 1D Holographic Liquids Nabil Iqbal Kavli Institute for Theoretical Physics In collaboration with Thomas.
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Towards a holographic Bose-Hubbard model Mitsutoshi Fujita (YITP, Kyoto U.) Collaborators: S. Harrison, A. Karch, R. Meyer, and N. Paquette arXiv:
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Quantum Phase Transitions Subir Sachdev Talks online at
AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
3rd International Workshop On High Energy Physics In The LHC Era.
Quantum critical transport, duality, and M-theory hep-th/ Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh.
Quantum criticality, the cuprate superconductors, and the AdS/CFT correspondence HARVARD Talk online: sachdev.physics.harvard.edu.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Strongly interacting cold atoms Subir Sachdev Talks online at
Shock waves in strongly coupled plasmas M. Kruczenski Purdue University Based on: arXiv: (S. Khlebnikov, G. Michalogiorgakis, M.K.) Quantum Gravity.
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Functional renormalization – concepts and prospects.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
Photo-emission in hQCD and LHC Sang-Jin Sin (Hanyang 2010/08/11.
Why General Relativity is like a High Temperature Superconductor Gary Horowitz UC Santa Barbara G.H., J. Santos, D. Tong, , and to appear Gary.
LS Cable, a South Korean company based in Anyang-si near Seoul, has ordered three million metres of superconducting wire from US firm American Superconductor.
Holographic Superconductors
SL(2,Z) Action on AdS/BCFT and Hall conductivity Mitsutoshi Fujita Department of Physics, University of Washington Collaborators : M. Kaminski and A. Karch.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
General Relativity and the Cuprates Gary Horowitz UC Santa Barbara GH, J. Santos, D. Tong, , GH and J. Santos, Gary Horowitz.
Disordered systems and the replica method in AdS/CFT Yasuaki Hikida (KEK) Ref. Fujita, YH, Ryu, Takayanagi, JHEP12(2008)065 April 13,
Entanglement Entropy in Holographic Superconductor Phase Transitions Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (April 17,
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Holographic Superconductors from Gauss-Bonnet Gravity Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (May 7, 2012) 2012 海峡两岸粒子物理和宇宙学研讨会,
Holographic Models for High-Tc superconductors Jiunn-Wei Chen (NTU) w/ Ying-Jer Kao, Debaprasad Maity, Wen-Yu Wen and Chen-Pin Yeh (talk largely based.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum criticality of Fermi surfaces in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum critical transport in graphene Quantum critical transport in graphene Lars Fritz, Harvard Joerg Schmalian, Iowa Markus Mueller, Harvard Subir Sachdev,
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Phys. Rev. Lett M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum critical transport and AdS/CFT HARVARD Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller,
Subir Sachdev Superfluids and their vortices Talk online:
The Landscape of the Hubbard model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Highly Frustrated Magnetism 2010 Johns Hopkins University.
Spectral function in Holographic superconductor Wen-Yu Wen (NTU) Taiwan String Theory Workshop 2010.
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum Mechanical Models for Near Extremal Black Holes
Holographic Magnetism from General Relativity
Review on quantum criticality in metals and beyond
Toward a Holographic Model of d-wave Superconductors
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Presentation transcript:

Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:

Frederik Denef, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Frederik Denef, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Yejin Huh, Harvard Max Metlitski, Harvard Yejin Huh, Harvard Max Metlitski, Harvard HARVARD

1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion

1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion

The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition

Insulator (the vacuum) at large U

Excitations:

Excitations of the insulator:

CFT3

Classical vortices and wave oscillations of the condensate Dilute Boltzmann/Landau gas of particle and holes

CFT at T>0

D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989) Resistivity of Bi films M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

Quantum critical transport S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum critical transport K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Quantum critical transport P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, (2005), 8714 (1997).

Quantum critical transport

Density correlations in CFTs at T >0

Conformal mapping of plane to cylinder with circumference 1/T

Density correlations in CFTs at T >0 No hydrodynamics in CFT2s.

Density correlations in CFTs at T >0

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Density correlations in CFTs at T >0 K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion

1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007) Collisionless to hydrodynamic crossover of SYM3

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007) Collisionless to hydrodynamic crossover of SYM3

Universal constants of SYM3 P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007) C. Herzog, JHEP 0212, 026 (2002)

Electromagnetic self-duality

K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)

C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/

The self-duality of the 4D abelian gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/

The self-duality of the 4D abelian gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/

Electromagnetic self-duality

1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion

1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion

d-wave superconductivity in cuprates Electron states occupied

d-wave superconductivity in cuprates

4 two-component Dirac fermions

d-wave superconductivity in cuprates

Time-reversal symmetry breaking

Lattice rotation symmetry breaking

M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000) E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson,.-A. Kim,er, P. OretoE. Fradkivelson, Phys. Rev. BPhys. Rev. B 77, (2008).

M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000) Ising order and Dirac fermions couple via a “Yukawa” term. Nematic ordering Time reversal symmetry breaking

M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000) Ising order and Dirac fermions couple via a “Yukawa” term. Nematic ordering Time reversal symmetry breaking

Integrating out the fermions yields an effective action for the scalar order parameter Expansion in number of fermion spin components N f Y. Huh and S. Sachdev, Physical Review B 78, (2008).

Integrating out the fermions yields an effective action for the scalar order parameter Expansion in number of fermion spin components N f Y. Huh and S. Sachdev, Physical Review B 78, (2008).

1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion

1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion

Quantum criticality of Pomeranchuk instability x y

Electron Green’s function in Fermi liquid (T=0)

Quantum criticality of Pomeranchuk instability x y

x y

x y

Quantum critical

Quantum criticality of Pomeranchuk instability Quantum critical Classical d=2 Ising criticality

Quantum criticality of Pomeranchuk instability Quantum critical D=2+1 Ising criticality ?

Quantum criticality of Pomeranchuk instability

Hertz theory

Quantum criticality of Pomeranchuk instability Hertz theory

Quantum criticality of Pomeranchuk instability Sung-Sik Lee, Physical Review B 80, (2009)

Quantum criticality of Pomeranchuk instability A string theory for the Fermi surface ?

AdS 4 -Reissner-Nordstrom black hole

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: F. Denef, S. Hartnoll, and S. Sachdev, arXiv: Examine free energy and Green’s function of a probe particle

Short time behavior depends upon conformal AdS 4 geometry near boundary T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: F. Denef, S. Hartnoll, and S. Sachdev, arXiv:

Long time behavior depends upon near-horizon geometry of black hole T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: F. Denef, S. Hartnoll, and S. Sachdev, arXiv:

Radial direction of gravity theory is measure of energy scale in CFT T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: F. Denef, S. Hartnoll, and S. Sachdev, arXiv:

AdS 4 -Reissner-Nordstrom black hole

AdS 2 x R 2 near-horizon geometry

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: Infrared physics of Fermi surface is linked to the near horizon AdS 2 geometry of Reissner-Nordstrom black hole

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: AdS 4 Geometric interpretation of RG flow

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: AdS 2 x R 2 Geometric interpretation of RG flow

Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: See also M. Cubrovic, J Zaanen, and K. Schalm, arXiv:

Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: Similar to non-Fermi liquid theories of Fermi surfaces coupled to gauge fields, and at quantum critical points

Free energy from gravity theory F. Denef, S. Hartnoll, and S. Sachdev, arXiv:

General theory of finite temperature dynamics and transport near quantum critical points, with applications to antiferromagnets, graphene, and superconductors Conclusions

The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density Conclusions