Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Frederik Denef, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Frederik Denef, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Yejin Huh, Harvard Max Metlitski, Harvard Yejin Huh, Harvard Max Metlitski, Harvard HARVARD
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition
Insulator (the vacuum) at large U
Excitations:
Excitations of the insulator:
CFT3
Classical vortices and wave oscillations of the condensate Dilute Boltzmann/Landau gas of particle and holes
CFT at T>0
D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989) Resistivity of Bi films M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
Quantum critical transport S. Sachdev, Quantum Phase Transitions, Cambridge (1999).
Quantum critical transport K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
Quantum critical transport P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, (2005), 8714 (1997).
Quantum critical transport
Density correlations in CFTs at T >0
Conformal mapping of plane to cylinder with circumference 1/T
Density correlations in CFTs at T >0 No hydrodynamics in CFT2s.
Density correlations in CFTs at T >0
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
Density correlations in CFTs at T >0 K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007) Collisionless to hydrodynamic crossover of SYM3
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007) Collisionless to hydrodynamic crossover of SYM3
Universal constants of SYM3 P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, (2007) C. Herzog, JHEP 0212, 026 (2002)
Electromagnetic self-duality
K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions
C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)
C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/
The self-duality of the 4D abelian gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/
The self-duality of the 4D abelian gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/
Electromagnetic self-duality
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
d-wave superconductivity in cuprates Electron states occupied
d-wave superconductivity in cuprates
4 two-component Dirac fermions
d-wave superconductivity in cuprates
Time-reversal symmetry breaking
Lattice rotation symmetry breaking
M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000) E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson,.-A. Kim,er, P. OretoE. Fradkivelson, Phys. Rev. BPhys. Rev. B 77, (2008).
M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000) Ising order and Dirac fermions couple via a “Yukawa” term. Nematic ordering Time reversal symmetry breaking
M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000) Ising order and Dirac fermions couple via a “Yukawa” term. Nematic ordering Time reversal symmetry breaking
Integrating out the fermions yields an effective action for the scalar order parameter Expansion in number of fermion spin components N f Y. Huh and S. Sachdev, Physical Review B 78, (2008).
Integrating out the fermions yields an effective action for the scalar order parameter Expansion in number of fermion spin components N f Y. Huh and S. Sachdev, Physical Review B 78, (2008).
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
Quantum criticality of Pomeranchuk instability x y
Electron Green’s function in Fermi liquid (T=0)
Quantum criticality of Pomeranchuk instability x y
x y
x y
Quantum critical
Quantum criticality of Pomeranchuk instability Quantum critical Classical d=2 Ising criticality
Quantum criticality of Pomeranchuk instability Quantum critical D=2+1 Ising criticality ?
Quantum criticality of Pomeranchuk instability
Hertz theory
Quantum criticality of Pomeranchuk instability Hertz theory
Quantum criticality of Pomeranchuk instability Sung-Sik Lee, Physical Review B 80, (2009)
Quantum criticality of Pomeranchuk instability A string theory for the Fermi surface ?
AdS 4 -Reissner-Nordstrom black hole
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: F. Denef, S. Hartnoll, and S. Sachdev, arXiv: Examine free energy and Green’s function of a probe particle
Short time behavior depends upon conformal AdS 4 geometry near boundary T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: F. Denef, S. Hartnoll, and S. Sachdev, arXiv:
Long time behavior depends upon near-horizon geometry of black hole T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: F. Denef, S. Hartnoll, and S. Sachdev, arXiv:
Radial direction of gravity theory is measure of energy scale in CFT T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: F. Denef, S. Hartnoll, and S. Sachdev, arXiv:
AdS 4 -Reissner-Nordstrom black hole
AdS 2 x R 2 near-horizon geometry
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: Infrared physics of Fermi surface is linked to the near horizon AdS 2 geometry of Reissner-Nordstrom black hole
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: AdS 4 Geometric interpretation of RG flow
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: AdS 2 x R 2 Geometric interpretation of RG flow
Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: See also M. Cubrovic, J Zaanen, and K. Schalm, arXiv:
Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv: Similar to non-Fermi liquid theories of Fermi surfaces coupled to gauge fields, and at quantum critical points
Free energy from gravity theory F. Denef, S. Hartnoll, and S. Sachdev, arXiv:
General theory of finite temperature dynamics and transport near quantum critical points, with applications to antiferromagnets, graphene, and superconductors Conclusions
The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density Conclusions