Hadrons in a Dynamical AdS/QCD model Colaborators: W de Paula (ITA), K Fornazier (ITA), M Beyer (Rostock), H Forkel (Berlin) Tobias Frederico Instituto.

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

Electroweak Symmetry Breaking from D-branes Joshua Erlich College of William & Mary Title U Oregon, May 22, 2007 w/ Chris Carone, Marc Sher, Jong Anly.
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,
Brane-World Inflation
Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Thermal phenomenological AdS/QCD 1. Thermal AdS/QCD 2. In-medium parameters 3. Chiral phase transition 4. Coupling constants Y. Kim (KIAS) with S.-J. Sin,
3rd International Workshop On High Energy Physics In The LHC Era.
Wayne Leonardo Silva de Paula Instituto Tecnológico de Aeronáutica Dynamical AdS/QCD model for light-mesons and baryons. Collaborators: Alfredo.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 2009.
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: A. Tseytlin, M.K. arXiv: R. Ishizeki, A. Tirziu, M.K. + work.
High Energy Scattering and String /Gauge Duality Evidence for QCD as an Effective String Theory Maldacena’s Counter Revolution: Gauge/Gravity Duality Re-discovery.
String / gauge theory duality and ferromagnetic spin chains Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov M. Kruczenski Princeton.
BOTTOM-UP HOLOGRAPHIC APPROACH TO QCD OverviewOverview Sergey Afonin Saint Petersburg State University XI Quark Confinement and the Hadron Spectrum, Saint.
Excited QCD 2010, February 3 (Tatra National Park, 2010) Holographic Models for Planar QCD without AdS/CFT Correspondence Sergey Afonin Ruhr-University.
Bottom-up AdS/QCD through a few examples Y. Kim (KIAS)
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
BOTTOM-UP HOLOGRAPHIC APPROACH TO QCD OverviewOverview Sergei Afonin Saint Petersburg State University Международная конференция «В поисках фундаментальных.
1 Dynamical Holographic QCD Model Mei HUANG Institute of High Energy Physics, CAS Theoretical Physics Center for Science Facilities, CAS Seminar at USTC,
Heavy-quark potential from AdS/CFT 侯 德 富 华中师范大学粒子物理研究所 两岸粒子物理与宇宙学研讨会, 重庆, 2012 年 5 月.
QGP and Hadrons in Dense medium: a holographic 2nd ATHIC based on works with X. Ge, Y. Matsuo, F. Shu, T. Tsukioka(APCTP), archiv:
Holographic model for hadrons in deformed AdS 5 background K. Ghoroku (Fukuoka Tech.) N. Maru (U. Rome) M. Yahiro (Kyushu U.) M. Tachibana (Saga U.) Phys.Lett.B633(2006)606.
SCALE LAWS AT LARGE TRANSVERSE MOMENTUM GENERALIZED COUNTING RULE FOR HARD EXCLUSIVE PROCESS Feb. 23, Kijun Park.
5d truncation ignoring the 5-sphere (SO(6) gauge symmetry) There are 42 scalars - a 20 of SO(6) - a 10 and 10 of SO(6) - scalar dilaton-axion, singlets.
Holographic Superconductors from Gauss-Bonnet Gravity Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (May 7, 2012) 2012 海峡两岸粒子物理和宇宙学研讨会,
Towards a Gravity Dual of Charmonium in the Strongly Coupled Plasma Paul Hohler University of Illinois, Chicago New Frontiers in QCD workshop Yukawa Institute.
Heavy Quarkonium melting with Holographic Potential Defu Hou (CCNU,Wuhan) SQM2008, Beijing, Oct. 6-10, 2008 With Hai-cang Ren, JHEP 0801:029,2008.
Heavy Quarkonium States with the Holographic Potential Defu Hou (CCNU) From Strings to Things, Seattle, May 2008 With Hai-cang Ren, JHEP 0801:029,2008.
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
The fast life of holographic mesons Aninda Sinha Perimeter Institute, Canada. with Robert Myers arXiv:0802.nnnn Quark Matter 2008, Jaipur, India.
Heavy-quark potential at subleading order from AdS/CFT Defu Hou Huazhong Normal University, Wuhan Hou, Ren, JHEP0801:029 ( 2008 ) Chu, Hou,Ren, JHEP0908:004.
Matthew Schwartz Johns Hopkins University October 11, 2007 The Extraordinary Predictive Power of Holographic QCD Fermilab Based on hep-ph/ , Erlich.
Feburary, 24 th, Contents Introduction to AdS/QCD model for Baryons –Bottom-Up Approach Nolen-Schiffer Anomaly –Isospin density effect on nucleon.
1 CONFINING INTERQUARK POTENTIALS FROM NON ABELIAN GAUGE THEORIES COUPLED TO DILATON Mohamed CHABAB LPHEA, FSSM Cadi- Ayyad University Marrakech, Morocco.
Holographic QCD in the medium
Study on the Mass Difference btw  and  using a Rel. 2B Model Jin-Hee Yoon ( ) Dept. of Physics, Inha University collaboration with C.Y.Wong.
Denis Parganlija (Frankfurt U.) Excited QCD 2010, Tatranska Lomnica/Slovakia Nature of Light Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450)
Predictions by string theory? f 0 (1500) → 4π 0 : Suppressed Charge radius of Roper = 0.73[fm] [w/ C.I.Tan and S.Terashima, ] [w/ T.Sakai and.
On String Theory Duals of Lifshitz-like Fixed Point Tatsuo Azeyanagi (Kyoto University) Based on work arXiv: (to appear in JHEP) with Wei Li (IPMU)
Heavy quarkonia in AdS/QCD Y. Kim (KIAS) YK, J.-P. Lee, S. H. Lee, Phys. Rev. D75:114008, YK, B.-H. Lee, C. Park, and S.-J. Sin, hep-th/
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Hadrons from a hard wall AdS/QCD model Ulugbek Yakhshiev (Inha University & National University of Uzbekistan) Collaboration Hyun-Chul Kim (Inha University)
Spectral function in Holographic superconductor Wen-Yu Wen (NTU) Taiwan String Theory Workshop 2010.
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
Denis Parganlija (Vienna UT) Mesons in non-perturbative and perturbative regions of QCD Mesons in non-perturbative and perturbative regions of QCD Denis.
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
Nature of f 0 (1370), f 0 (1500) and f 0 (1710) within the eLSM Stanislaus Janowski in collaboration with F. Giacosa, D. Parganlija and D. H. Rischke Stanislaus.
Geometric Monte Carlo and Black Janus Geometries
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
Density effect and beyond
Institut für Theoretische Physik Technische Universität Wien
Ziqiang Zhang Huazhong Normal University
Weak Interacting Holographic QCD
Quark Mass in Holographic QCD
Hysteresis Curves from 11 dimensions
Double Heavy Hadronic Spectrum from Supersymmetric LFHQCD
Finite temperature in modified Soft-Wall AdS/QCD Model
Towards Understanding the In-medium φ Meson with Finite Momentum
Excited QCD 2010, 31 Jan.-6 Feb., 2010 Tatra National Park (Slovakia)
Theory on Hadrons in nuclear medium
Presentation transcript:

Hadrons in a Dynamical AdS/QCD model Colaborators: W de Paula (ITA), K Fornazier (ITA), M Beyer (Rostock), H Forkel (Berlin) Tobias Frederico Instituto Tecnológico de Aeronáutica - Brasil PRD (2009) 79 JHEP 07 (2007) 077 PLB 693 (2010) 287

Outline Regge Phenomenology AdS/QCD models Deformed AdS metric Meson and Baryon spectra Dynamical AdS/QCD model High spin meson and Scalar spectra I=0 scalar partial decay width I=1/2 scalar & K-Pi S-wave phase-shift Summary

Regge trajectories 2S+1 L J M 2 ~W(N+L) W ~ 1GeV 2 D.V. Bugg 2004

Light-hadron spectra E. Klempt 2002 JHEP 07 (2007) 077 N=1 N=2

Field/Operator correspondence field theory operators classical fields operator dimension scalars Mass of the field carries the dimension Witten (1998) small z AdS 5 x S 5 Holographic coordinate Maldacena (1998) Holography - AdS/CFT

AdS/QCD models  Hard IR wall  Polchinski and Strassler, Phys. Rev. Lett.88, (2002); JHEP 05, 012 (2003)  Boschi and Braga, JHEP 0305, 009 (2003); EPJ C32,529 (2004)  Brodsky and de Téramond, Phys. Rev. Lett. 96, (2006).  Katz, Lewandowski, and Schwartz, Phys. Rev. D 74, (2006).  …  Soft breaking  Karch, Katz, Son and Stephanov, Phys. Rev. D 74, (2006).  Andreev and Zakharov, arXiv:hep-ph/ ; Phys. Rev. D 74, (2006).  Kruczenski, Zayas, Sonnenschein and Vaman, JHEP 06, 046 (2005)  Kuperstein and Sonnenschein, JHEP 11, 026 (2004)  …

Meson and baryon excitations in AdS/QCD (A bottom-up approach)  Hadron phenomenology (light mesons and baryons)  M 2 proport. J (L) total (angular) momentum  M 2 proport. N radial excitation  mesons W = 1.25±0.15 GeV 2 and 1.14 ± GeV 2  baryons W =1.081 ± GeV 2  AdS/CFT correspondence and QCD  hard scattering amplitudes () Polchinski and Strassler 2002  UV ~ z Δ, Δ dimension of op., z 5 th dimension  conformal symmetry broken by confinement M 2 = W(L+N), NOT ~L+2N etc. almost universal W ~1.1 GeV 2

Standard bulk equations with A(z)=0  Identification of hadrons  lightest string modes ↔ leading order twist → low spin hadrons (valence quark states)  orbital excitations of strings ↔ fluctuations around the AdS background → higher spin states  Interpolating operators ( Brodsky and de Téramond 2005)  fixing the 5-dim effective mass (bottom up, UV phenomenology)

 String modes in AdS bulk  Sturm Liouville type eigenvalue problem for mesons and baryons  e.g. solve “free” Dirac equation in AdS 5 space where A(z)=0  Choice of states through UV behavior (Polchinsky & Strassler) (scalar) (fermion) Standard bulk equations with A(z)=0

Soft conformal symmetry breaking / Confinement  Request phenomenological Regge behavior for  both, orbital AND radial excitations of  both, mesons AND baryons  Confinement  harmonic oscillator type  Soft conformal sym. breaking  universal implementation  only one a priori free scale  simple realisation via  twist dimension  new effective potential JHEP 07 (2007) 077

Solutions with this potential  Mesons  Baryons

Regge trajectories Mesons

Delta Regge trajectories

Nucleon Regge trajectories Improvement: Fit of the nucleon spectrum: Brodsky and Teramond (see arXiv: )

Holographic encoding, find proper A(z)  The metric of the 10 dim space of strings keep A(z) finite  again calculate bulk equations (Klein Gordan, Dirac, Rarita-Schwinger,…)  Find A(z) that encode the previous potentials  Leads to nonlinear eq. for A(z)

Gravitational potential  Solution baryonic sector  Solutions mesonic sector  numerical only  poles for L=0,1 L=0 L=1 L=3 L=2 AM(z)AM(z)

AdS/QCD Models Hard Wall Model QCD Scale introduced by a boundary condition. Metric: Slice of AdS. The metric has Confinement by the Wilson loops area law. Does not have linear Regge Trajectories. Soft Wall Model QCD Scale introduced by a dilaton field. AdS + Dilaton is not a solution of Einstein equations The metric does not has Confinement by the Wilson analysis. Has Regge Trajectories for mesons (Barions). Polchinski, Strassler (2002) Karch, Katz, Son, Stephanov (2006) Deformed AdS model QCD Scale introduced by an IR deformation Deformed AdS is not a solution of Einstein Eq. The metric does not has Confinement by the Wilson loops analysis. Has Regge Trajectories for mesons and Barions Forkel, Beyer, Frederico (2007) Boschi, Braga (2003) Brodsky, Teramond (2003) Brodsky, Teramond (2008) Vega, Schmidt (2008) Maldacena, PRL 80, 4859 (1998); Rey and Yee, EPJC 22, 379 (2001).

Dynamical Soft Wall Solve Einstein's equations coupled to a dilaton field. The AdS metric is deformed in the IR limit. UV, z→0 scaling behavior IR, z → “large“ (confinement) Confining Metric AdS space with a IR deformation. Regge Trajectories will determine the IR deformation. Background Field Scalar Field (dilaton) PRD (2009) 79

5d Einstein Equations Dilaton potential Einstein's Equations Dilaton Equation Dilaton field Also discussed by Csaki and Reece (2007); Gursoy, Kiristsis, Nitti (2008).

Solutions of 5d Einstein Equation For a given warp factor A(z), the above equations give a dilaton field (and its potential) that solves the 5D Einstein equations.

Holographic Dual model: Hadrons in QCD (4D) correspond to the normalizable modes of 5D fields. These normalizable modes satisfy the linearized equation of motion in the background 5D-geometry. The eigenvalue corresponding to a normalizable meson mode is its square mass. Hadronic Resonances QCD Operator For Spin S= 1, 2, 3,... Karch, Katz, Son and Stephanov, PRD74, (2006).

Meson states in the Dilaton-Gravity Background Sturm-Liouville type eigenvalue problem for mesons Sturm-Liouville Potential Deformed AdS metric For example

Mass Gap Regge Trajectories Confinement and Regge Trajectories IR limit It is in agreement with the area law condition Gursoy, Kiritsis and Nitti (2008)

Metric Parameters Universal Effective Potential in the IR Limit for all Spins.

n Vector Meson Experimental Hard Wall Model Soft Wall Model Dynamical Soft Wall Model PRD (2009) 79

Dilaton Field for Vector Meson

Dynamical Soft Wall Model Experimental Data Regge Trajectories n = 1 n = 2 n = 3 n = 4 n = 5 S PRD (2009) 79

Light Scalar Mesons Regge slope 0.5 GeV 2 PLB 693 (2010) 287

Light Scalar Meson f0 Experimental Dynamical Soft Wall Model n PLB 693 (2010) 287

Dilaton Field for Scalar Meson

Pseudoscalar Mesons Universal Effective Potential in the IR Limit Zero mass for the Pion Do not affect the field UV limit as Lagrangian ~

Scalar Decay Width into two Pions Overlap of WF ~ Transition Amplitude Decay Width

Scalar Wave Functions

Scalar Decay Width into two Pions PLB 693 (2010) 287

K  I=1/2 s-wave phase-shift S-wave K  amplitude  BaBar parametrization Proposal to interpret the scalar mesons f 0 family as radial excitations of sigma within a Dynamical AdS/QCD model Radial excitations of K*(800) W. De Paula, T. Frederico, H. Forkel and M. Beyer, Phys. Rev. D 79 (2009)

We introduce K*(1630) and K*(1950) extending the parametrization given in the BABAR Collaboration: B. Aubert, et al., arXiv: [hep-ex] (2009). With the S-matrix given by: K  I=1/2 s-wave phase-shift

38 K  I=1/2 s-wave phase-shift D  K  K  D. Aston et al., Nucl. Phys. B296 (1988) 493 E. M. Aitala et al. (E791 Collaboration), Phys. Rev. Lett. 86 (2001) 765; Phys. Rev. Lett. 86 (2001) 770; Phys. Rev. Lett. 89 (2002) J. M. Link et al. (FOCUS Collaboration) Phys. Lett. B585 (2004) 200, Phys. Lett. B681 (2009)

D  K  K  I=1/2 s-wave ampl. modulus

Baryons Mode Equation We use the Metric To obtain a Regge Trajectories That gives a complex Dilaton field!

1. Light meson/barion spectra encoded by Gravity/Gauge duality with a soft deformation of the AdS metric  hadron dependent metric! 2. Dynamical Holographic dual model in 5 dimensions (coupled gravity  dilaton) - deformed AdS metric (confinement and consistency with area law ) - Regge trajectories for light mesons S > 0 - I=0 scalars and radial excitations & S  PP decay width - I=1/2 scalars and S-wave K-Pi scattering - meson dependent metric! - nucleon does not fit into the model Next step: - Fields in 10d gravity models, e.g. Maldacena-Nunes, and reduction to 5d to check for hadron metric dependence in 5d-models... Summary