UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Review Lecture Tuesday, 12/11/01.

Slides:



Advertisements
Similar presentations
Lecture 24 MAS 714 Hartmut Klauck
Advertisements

Cse 521: design and analysis of algorithms Time & place T, Th pm in CSE 203 People Prof: James Lee TA: Thach Nguyen Book.
Five Problems CSE 421 Richard Anderson Winter 2009, Lecture 3.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Midterm Review Fri. Oct 26.
CS333 Algorithms
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Lecture 1 (Part 1) Introduction/Overview Tuesday, 9/4/01.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2005 Lecture 1 (Part 1) Introduction/Overview Tuesday, 1/25/05.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2009 Lecture 1 Introduction/Overview Text: Chapters 1, 2 Th. 9/3/2009.
About the Course Lecture 0: Sep 2 AB C. Plan  Course Information and Arrangement  Course Requirement  Topics and objectives of this course.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2003 Review Lecture Tuesday, 5/6/03.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Lecture 6 Tuesday, 10/30/01 Approximation Algorithms.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Lecture 1 (Part 1) Introduction/Overview Tuesday, 9/3/02.
UMass Lowell Computer Science Foundations of Computer Science Prof. Karen Daniels Fall, 2009 Lecture 1 Introduction/Overview Th. 9/3/2009.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Lecture 4 Tuesday, 10/2/01 Graph Algorithms: Part 2 Network.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Review Lecture Tuesday, 12/10/02.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2002 Tuesday, 5/7/02 Computational Geometry Chapter 33.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Lecture 1 Introduction/Overview Wed. 9/5/01.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2007 Lecture 1 Course Introduction.
CSE 421 Algorithms Richard Anderson Lecture 27 NP Completeness.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2005 Lecture 1 Introduction/Overview Text: Chapters 1, 2 Wed. 9/7/05.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2000 Final Review Wed. 12/13.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2004 Lecture 1 (Part 1) Introduction/Overview Wednesday, 9/8/04.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2007 Lecture 1 Introduction/Overview Text: Chapters 1, 2 Wed. 1/24/07.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2001 Lecture 1 Introduction/Overview Wed. 1/31/01.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2000 Lecture 1 Introduction/Overview Wed. 9/6/00.
Discrete Structures for Computer Science Ruoming Jin MW 5:30 – 6:45pm Fall 2009 rm MSB115.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2002 Lecture 1 (Part 1) Introduction/Overview Tuesday, 1/29/02.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2001 Final Review Mon. 5/14-Wed. 5/16.
Lecture 6 Jianjun Hu Department of Computer Science and Engineering University of South Carolina CSCE350 Algorithms and Data Structure.
C&O 355 Mathematical Programming Fall 2010 Lecture 17 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2002 Lecture 1 Introduction/Overview Text: Chapters 1, 2 Thurs.
1 Algorithms and networks Period 2, 2014/ Today Graphs and networks and algorithms: what and why? This course: organization Case introduction:
CSEP 521 Applied Algorithms Richard Anderson Lecture 10 NP Completeness.
Algorithms  Al-Khwarizmi, arab mathematician, 8 th century  Wrote a book: al-kitab… from which the word Algebra comes  Oldest algorithm: Euclidian algorithm.
Approximation Algorithms
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2009 Lecture 1 (Part 1) Introduction/Overview Tuesday, 1/27/09.
CSE 589 Part VI. Reading Skiena, Sections 5.5 and 6.8 CLR, chapter 37.
CSE 421 Algorithms Richard Anderson Lecture 27 NP-Completeness and course wrap up.
Analysis of Algorithms COME 355 Introduction. What is an algorithm? An algorithm is a sequence of unambiguous instructions for solving a problem, i.e.,
1 Algorithms and Networks Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij.
CSE 589 Part V One of the symptoms of an approaching nervous breakdown is the belief that one’s work is terribly important. Bertrand Russell.
Design and Analysis of Algorithms (09 Credits / 5 hours per week) Sixth Semester: Computer Science & Engineering M.B.Chandak
Lecture 7 Jianjun Hu Department of Computer Science and Engineering University of South Carolina CSCE350 Algorithms and Data Structure.
CES 592 Theory of Software Systems B. Ravikumar (Ravi) Office: 124 Darwin Hall.
CSE 421 Algorithms Richard Anderson Lecture 27 NP-Completeness Proofs.
TU/e Algorithms (2IL15) – Lecture 13 1 Wrap-up lecture.
CSE 421 Algorithms Richard Anderson Lecture 28 Survey of NP Complete Problems NP-Complete P.
ICS 353: Design and Analysis of Algorithms NP-Complete Problems King Fahd University of Petroleum & Minerals Information & Computer Science Department.
Design and Analysis of Algorithms (09 Credits / 5 hours per week)
Lecture 1 (Part 1) Introduction/Overview Tuesday, 9/9/08
Richard Anderson Lectures NP-Completeness
Richard Anderson Lecture 26 NP-Completeness
Lecture 1 Introduction/Overview Text: Chapters 1, 2 Wed. 1/28/04
Richard Anderson Lecture 29 NP-Completeness and course wrap-up
Summary of lectures Introduction to Algorithm Analysis and Design (Chapter 1-3). Lecture Slides Recurrence and Master Theorem (Chapter 4). Lecture Slides.
Design and Analysis of Computer Algorithm (CS575-01)
Design and Analysis of Algorithms (07 Credits / 4 hours per week)
ICS 353: Design and Analysis of Algorithms
Richard Anderson Lecture 25 NP-Completeness
Richard Anderson Lecture 28 NP-Completeness
Richard Anderson Lecture 29 Complexity Theory
cse 521: design and analysis of algorithms
Richard Anderson Lecture 30 NP-Completeness
CS 281: Discrete Mathematics for Computer Science
Richard Anderson Lecture 26 NP-Completeness
Richard Anderson Lecture 27 Survey of NP Complete Problems
Graphs CS 2606.
INTRODUCTION TO ALOGORITHM DESIGN STRATEGIES
Department of Computer Science & Engineering
Design and Analysis of Algorithms (04 Credits / 4 hours per week)
Presentation transcript:

UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Review Lecture Tuesday, 12/11/01

Some Algorithm Application Areas Computer Graphics Geographic Information Systems Robotics Bioinformatics Astrophysics Medical Imaging Telecommunications Design Apply Analyze

Some Typical Problems Fourier Transform Input: A sequence of n real or complex values h_i, 0 <= i <= n-1, sampled at uniform intervals from a function h. Problem: Compute the discrete Fourier transform H of h Nearest Neighbor Input: A set S of n points in d dimensions; a query point q. Input: A set S of n points in d dimensions; a query point q. Problem: Which point in S is closest to q? Problem: Which point in S is closest to q? SOURCE: Steve Skiena’s Algorithm Design Manual (for problem descriptions, see graphics gallery at ) (for problem descriptions, see graphics gallery at Shortest Path Input: Edge-weighted graph G, with start vertex and end vertex t Problem: Find the shortest path from to t in G Bin Packing Input: A set of n items with sizes d_1,...,d_n. A set of m bins with capacity c_1,...,c_m. Problem: How do you store the set of items using the fewest number of bins?

Some Typical Problems Transitive Closure Input: A directed graph G=(V,E). Problem: Construct a graph G'=(V,E') with edge (i,j) \in E' iff there is a directed path from i to j in G. For transitive reduction, construct a small graph G'=(V,E') with a directed path from i to j in G' iff (i,j) \in E. Convex Hull Input: A set S of n points in d- dimensional space. Problem: Find the smallest convex polygon containing all the points of S. Problem: Find the smallest convex polygon containing all the points of S. Eulerian Cycle Input: A graph G=(V,E). Problem: Find the shortest tour of G visiting each edge at least once. Edge Coloring Input: A graph G=(V,E). Problem: What is the smallest set of colors needed to color the edges of E such that no two edges with the same color share a vertex in common?

Some Typical Problems Hamiltonian Cycle Input: A graph G=(V,E). Problem: Find an ordering of the vertices such that each vertex is visited exactly once. Clique Input: A graph G=(V,E). Problem: What is the largest S \subset V such that for all x,y \in S, (x,y) \in E?

Tools of the Trade ä Algorithm Design Patterns ä dynamic programming, greedy, approximation algorithms ä Advanced Analysis Techniques ä asymptotic analysis ä Theoretical Computer Science principles ä NP-completeness, hardness ä Advanced Data Structures ä binomial heaps Asymptotic Growth of Functions Summations Recurrences Sets Probability MATH Proofs Calculus Combinations Logarithms Number Theory Geometry Trigonometry Complex Numbers Permutations Linear Algebra Polynomials

Course Structure ä Advanced Algorithmic Paradigms ä Dynamic programming, greedy algorithms ä Approximation algorithms, parallel programming ä Graph Algorithms ä Shortest paths (single source & all pairs), Maximum flow ä Theory: NP-Completeness ä Complexity classes, reductions, hardness, completeness ä Advanced Algorithms for Special Applications ä Cryptography, String/Pattern Matching ä Computational Geometry ä Advanced Data Structures ä Binomial heaps

Detailed Topics

Detailed Topics (continued)

Chapter Dependencies Ch 1-6 Math Review: Asymptotics, Recurrences, Summations, Sets, Graphs, Counting, Probability, Calculus, Proofs Techniques (e.g. Inductive) Logarithms Ch 7-10 Sorting Ch 11-14, 15 Data Structures Ch 16, 17, 18 Advanced Design & Analysis Techniques Ch Advanced Data Structures Ch 23-25,26,27 Graph Algorithms Ch 28, 29 Parallel Comparison-Based Sorting Networks, Arithmetic Circuits Ch 30 Parallel Comparison-Based Sorting Networks Ch 31 Matrix Operations Math: Linear Algebra Ch 35 Computational Geometry Math: Geometry (High School Level) Ch 36 NP-Completeness Ch 37 Approximation Algorithms You’re responsible for all sections of this chapter + extra material from Garey & Johnson + supplement from new edition of text + literature paper

Chapter Dependencies Ch 33 Number-Theoretic Algorithms RSA Math: Number Theory You’re responsible for material in this chapter that we discussed in lecture. (Note that this does not include sections 33.8 or 33.9.) Ch 34 String Matching Automata You’re responsible for material in Sections of this chapter. (Note that this does not include section 34.5.)

Relevant Sections of Chapters Ch28 Sorting Networks You’re responsible for material in this chapter that we discuss in lecture. (Note that this includes all sections ) Ch29 Arithmetic Circuits You’re not responsible for any of the material in this chapter. We will not be discussing it in lecture. Ch30 Algorithms for Parallel Computers You’re responsible for material in this chapter that we discuss in lecture. (Note that this includes only sections )

Relevant Sections of Chapters Ch20 Binomial Heaps You’re responsible for material in this chapter that we discuss in lecture. (Note that this includes all sections.) Ch21 Fibonacci Heaps You’re responsible for material in this chapter that we discuss in lecture. (Note that this includes all sections.) Note that Chapter 22 has been removed. Ch7 HeapSort

Important Dates ä Final Exam: ä Tuesday, 18 December, OS311, 5:30 pm

Grading ä ä Homework35% ä ä Midterm 30% (open book, notes ) ä ä Final Exam35% (open book, notes )