Density. Introduction We can see the difference in density of different materials when we look at... wood floating on water helium balloons floating.

Slides:



Advertisements
Similar presentations
3-1 Notes – Density Chapter 3 Lesson 1.
Advertisements

Density. Density= Mass Volume D= m V Mass Mass: Amount of matter in a substance. Don’t confuse with weight. Weight: the force with which the earth pulls.
Unit 1 Lesson 1 Introduction to Matter
Determining Density 3.4 What determines the density of a substance?
Density.
The Size and Mass of an Oleic Acid Molecule. 1. Estimate the Width of the drop.
DENSITY.
Measuring Matter 6 Beta Measuring Matter Which weighs more, a pound of feathers or a pound of sand? Which weighs more, a pound of feathers or a.
Density. Computing Density Density = mass (g) volume (cm 3 ) DETERMINE VOLUME: DETERMINE MASS: RT = Pg. 1.
Density. Density is the mass of a given object over a unit of volume Density is an intensive property The formula to solve for density is D=m/V.
DENSITY LAB Mass the amount of material in an object can be determined by using a triple beam balance.
Density by. Density is _______per unit _______ of a material D = m ÷___ m = ___x___ v = m ÷ ____ D = _____ g/mL or g/cm 3 m = ____in grams L = length.
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt Matter Properties of matter Mass.
Separating Mixtures The components of a mixture can be separated based on the physical properties of: Magnetism.
Density.
Density- Cornell notes page 125. Density Physical property of matter amount of matter in a given amount of space. (amount of matter is called “mass,”
Introduction to Matter
The density is the ratio of mass (stuff that makes up an object) and its volume (the amount of space that stuff takes up). The more mass an object has.
Hosted by Mrs. Sowa Density Equation Graphs Matter Models Measuring m and V
Density. What is Density? Density is how closely packed together molecules are in a substance. Formula: Density = mass volume D = m V.
Derived Units Volume = length  width  height Density = mass per unit volume (g/cm 3 or g/ml) D = MVMV D M V.
+ Density Austin High School Chemistry Ms. Gutierrez
Density Formula: Density = Mass ÷ Volume Standard Unit =
CHEMISTRY the study of matter MATTER anything that has mass and has volume.
Notes on mass, volume & density. Weight Weight: A measure of the force of gravity on an object. Weight: A measure of the force of gravity on an object.
Measurement Quiz Review. What is the term for the amount of space an object occupies? VOLUME.
1. Which is more dense, water or wood? How do you know? 2. Which is more dense, 1 pound of lead or 100 pounds of lead? Wood, if it sinks in water. SAME!
Density. Problem 1 Given: mass = g volume= 100 ml Find: density Solution: DV M.
Properties of Matter Mass Volume Density.
Chapter 1 – Section 2 p Measuring Matter. I. Weight – a measure of the force of gravity A. Changes if you go to the moon or another planet since.
 A. Matter 1.Definition: anything that has mass and volume. 2. Characteristic properties (such as density, melting point, boiling point) can be used.
Introduction to Matter Lecture: Calculating Density.
DENSITY. There are three phases of matter: solid liquid gas.
Density. Density – How much mass is in a given volume.
Density Notes. What is density? Density – mass per unit volume What does per mean? – Examples that use per: miles per hour meters per second $ per pound.
Density DEF: amount of mass in a certain volume. Density is a physical property. Solids have the highest density. Gases have the lowest density. The density.
Introduction to Elements and the Periodic Table Review Homework Notes: Atomic Theory Video: Meet the Elements and Worksheet Quiz 1 - Physical Properties.
Density A booklet to learn from.
Volume The amount of space an object takes up. 3 ways to measure volume Liquid Volume –Graduated cylinder mL Volume of a Regular Solid –Length x Width.
Which of these objects will float and which will sink in water?
Open Density Clip. DENSITY Density is used to describe how concentrated or how packed an object is like the picture below: Less Dense More Dense.
Unit 1 Lesson 1 Introduction to Matter Copyright © Houghton Mifflin Harcourt Publishing Company.
Density The property of density is intensive and is the measure of the ratio of an objects mass to its volume. Density is a physical property of matter.
Density Practice Quiz!!. Practice Density Problem #1 Students doing a lab started with 30 ml of water in a graduated cylinder. They added an object to.
Unit 1 Lesson 1 Introduction to Matter
DENSITY Density is defined as mass per unit volume. It is a measure of how tightly packed and how heavy the molecules are in an object. Density is the.
Volume. Volume is the amount of space occupied by an object Volume is the amount of space occupied by an object.
Measuring Matter 2.2 Weight and Mass
Density is mass per unit volume.
Unit 1 Lesson 1 Introduction to Matter
Density- notes page 21 Essential Question: How do we explain density?
Density- Cornell notes page 21
Density Practice Problems
Density Think back to our definition of matter (anything that has mass and takes up space). What is another word for how much space something takes up?
Measuring Matter Chapter 2 Section 2.
WARM UP (for NOTES) 1. Which is more dense, water or wood?
Density Ratio of mass of object to its volume Density = Mass / volume
Density Think back to our definition of matter (anything that has mass and takes up space). What is another word for how much space something takes up?
Density -density is the amount of stuff in a given volume; it is symbolized as ρ -it is mass per volume; note that units can be virtually any mass or volume.
Measuring Notes キThe units used for mass are grams (g).
DENSITY.
Unit 1 Lesson 1 Introduction to Matter
Density.
Density.
DENSITY.
Chapter 3: Measurement: Density
CHEMISTRY the study of matter
Density.
A closer look at the physical property of Density
Presentation transcript:

Density

Introduction

We can see the difference in density of different materials when we look at... wood floating on water helium balloons floating in the air

Introduction We can see the difference in density of different materials when we look at... iron sinking in water lava lamps

Introduction

Properties

Density is an intensive property of matter. The density of matter does not depend on the amount of matter. Density does depend on the composition of the matter

Properties Density is the mass of the matter divided by the volume of the matter. The density of matter generally decreases as the temperature of the matter increases. D = mVmV

Properties The density of some materials is given in this chart: Material D (g/mL) Material D (g/L) gold19.3 carbon dioxide 1.83 mercury13.6argon1.66 lead11.4air1.20 copper8.86helium0.166 corn oil0.922hydrogen0.084 water1.000methane0.665

Properties

Doing the Math

Density is the mass of the matter divided by the volume of the matter. The volume of matter is the mass divided by the density. The mass of matter is the density times the volume. D = mVmV V = mDmD m = DV

Doing the Math

Examples

Example 1:

Examples Example 1: A block of wood has a length of 15 cm, a width of 10. cm, and a height of 5.0 cm. The block also has a mass of 340 g. What is the density of the block?

Examples Example 1: A block of wood has a length of 15 cm, a width of 10. cm, and a height of 5.0 cm. The block also has a mass of 340 g. What is the density of the block? V = lwh = (15 cm)(10. cm)(5.0 cm)

Examples Example 1: A block of wood has a length of 15 cm, a width of 10. cm, and a height of 5.0 cm. The block also has a mass of 340 g. What is the density of the block? V = lwh = (15 cm)(10. cm)(5.0 cm) = 750 cm 3

Examples Example 1: A block of wood has a length of 15 cm, a width of 10. cm, and a height of 5.0 cm. The block also has a mass of 340 g. What is the density of the block? D = m V V = lwh = (15 cm)(10. cm)(5.0 cm) = 750 cm 3

Examples Example 1: A block of wood has a length of 15 cm, a width of 10. cm, and a height of 5.0 cm. The block also has a mass of 340 g. What is the density of the block? D = = m 340 g V 750 cm 3 V = lwh = (15 cm)(10. cm)(5.0 cm) = 750 cm 3

Examples Example 1: A block of wood has a length of 15 cm, a width of 10. cm, and a height of 5.0 cm. The block also has a mass of 340 g. What is the density of the block? D = = = g/cm 3 m 340 g V 750 cm 3 V = lwh = (15 cm)(10. cm)(5.0 cm) = 750 cm 3

Examples Example 1: A block of wood has a length of 15 cm, a width of 10. cm, and a height of 5.0 cm. The block also has a mass of 340 g. What is the density of the block? D = = = g/cm 3 = 0.45 g/cm 3 m 340 g V 750 cm 3 V = lwh = (15 cm)(10. cm)(5.0 cm) = 750 cm 3

Examples Example 1: A block of wood has a length of 15 cm, a width of 10. cm, and a height of 5.0 cm. The block also has a mass of 340 g. What is the density of the block? D = = = g/cm 3 = 0.45 g/cm 3 m 340 g V 750 cm 3 V = lwh = (15 cm)(10. cm)(5.0 cm) = 750 cm 3

Examples

Example 2:

Examples Example 2: A block of lead has a mass of 37.4 g. Lead has a density of 11.4 g/cm 3. What is the volume of the block?

Example 2: A block of lead has a mass of 37.4 g. Lead has a density of 11.4 g/cm 3. What is the volume of the block? Examples D = m V

Example 2: A block of lead has a mass of 37.4 g. Lead has a density of 11.4 g/cm 3. What is the volume of the block? Examples D = ➔ V = m V D

Example 2: A block of lead has a mass of 37.4 g. Lead has a density of 11.4 g/cm 3. What is the volume of the block? Examples D = ➔ V = = m m 37.4 g V D 11.4 g/cm 3

Example 2: A block of lead has a mass of 37.4 g. Lead has a density of 11.4 g/cm 3. What is the volume of the block? Examples D = ➔ V = = = cm 3 m m 37.4 g V D 11.4 g/cm 3

Example 2: A block of lead has a mass of 37.4 g. Lead has a density of 11.4 g/cm 3. What is the volume of the block? Examples D = ➔ V = = = cm 3 m m 37.4 g V D 11.4 g/cm 3 V = 3.28 cm 3

Example 2: A block of lead has a mass of 37.4 g. Lead has a density of 11.4 g/cm 3. What is the volume of the block? V = 3.28 cm 3 Examples D = ➔ V = = = cm 3 m m 37.4 g V D 11.4 g/cm 3

Examples

Example 3:

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l = π( cm) 2 (20.0 cm)

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l = π( cm) 2 (20.0 cm) = cm 3

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l = π( cm) 2 (20.0 cm) = cm 3 D = m V

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l = π( cm) 2 (20.0 cm) = cm 3 D = ➔ m V

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l = π( cm) 2 (20.0 cm) = cm 3 D = ➔ m = DV m V

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l = π( cm) 2 (20.0 cm) = cm 3 D = ➔ m = DV = (8.86 g/cm 3 )(0.157 cm 3 ) m V

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l = π( cm) 2 (20.0 cm) = cm 3 D = ➔ m = DV = (8.86 g/cm 3 )(0.157 cm 3 ) m V m = 1.39 g

Examples Example 3: What is the mass of a 20.0 cm length of copper wire with a density of 8.86 g/cm 3 and a radius of cm? The volume of a cylinder is V = πr 2 l V = πr 2 l = π( cm) 2 (20.0 cm) = cm 3 D = ➔ m = DV = (8.86 g/cm 3 )(0.157 cm 3 ) m V m = 1.39 g