Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.

Slides:



Advertisements
Similar presentations
Work, Energy, and Power AP Physics C.
Advertisements

Work, Energy & Power Honors Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Honors Physics. By his power God raised the Lord from the dead, and he will raise us also. 1 Corinthians 6:14.
Work, Energy, And Power m Honors Physics Lecture Notes.
Work and Energy Chapter 7.
Kinetic energy 動能 and work 功 (Chap. 7) What is energy? it is a conserved quantity 守怛量 although energy can change form, it can be neither created nor destroyed.
1 Chapter Five Work, Energy, and Power. 2 Definitions in physics do not always match the usage of the words. We consider mechanical work, energy, and.
1a. Positive and negative work
Work and Energy Definition of Work Kinetic Energy Potential Energy
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
AP Physics 1 – Unit 5 WORK, POWER, AND ENERGY. Learning Objectives: BIG IDEA 3: The interactions of an object with other objects can be described by forces.
Work, Energy and Power AP style
Work, Energy, Power, and Machines. Energy Energy: the currency of the universe. Just like money, it comes in many forms! Everything that is accomplished.
WORK In order for work to be done, three things are necessary:
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Introduction to Work Monday, September 14, 2015 Work Work tells us how much a force or combination of forces changes the energy of a system. Work is.
Work, Power, Energy Work.
WORK AND ENERGY 1. Work Work as you know it means to do something that takes physical or mental effort But in physics is has a very different meaning.
The Work Energy Theorem Up to this point we have learned Kinematics and Newton's Laws. Let 's see what happens when we apply BOTH to our new formula for.
Work, Energy, Power, and Machines. Energy Energy: the currency of the universe. Just like money, it comes in many forms! Everything that is accomplished.
Work, Energy & Power AP Physics 1. There are many different TYPES of Energy. Energy is expressed in JOULES (J) Energy can be expressed more specifically.
Mechanics Work and Energy Chapter 6 Work  What is “work”?  Work is done when a force moves an object some distance  The force (or a component of the.
Energy m m Physics 2053 Lecture Notes Energy.
Physics 3.3. Work WWWWork is defined as Force in the direction of motion x the distance moved. WWWWork is also defined as the change in total.
Work and Energy Chapter 7 Conservation of Energy Energy is a quantity that can be converted from one form to another but cannot be created or destroyed.
© 2010 Pearson Education, Inc. Lecture Outline Chapter 5 College Physics, 7 th Edition Wilson / Buffa / Lou.
Work and Energy Work The work done by a constant force is defined as the product of the component of the force in the direction of the displacement and.
Work and Energy Level 1 Physics. OBJECTIVES AND ESSENTIAL QUESTIONS OBJECTIVES Define and apply the concepts of work done by a constant force, potential.
Energy. Analyzing the motion of an object can often get to be very complicated and tedious – requiring detailed knowledge of the path, frictional forces,
Work and Energy.
 Energy, Work and Simple Machines  Chapter 10  Physics.
Lecture 10: Work & Energy.
WORK A force that causes a displacement of an object does work on the object. W = F d Work is done –if the object the work is done on moves due to the.
Work, Energy & Power AP Physics 1. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power. There are many different TYPES of Energy. Energy is expressed in JOULES (J) Energy is defined as the ability to do work. Work is.
WORK, ENERGY & POWER AP Physics 1. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Energy 1. Work 2. Kinetic Energy 3. Work-Energy Principle 4. Friction 5. Potential Energy 6. Conservation of Energy ©2013 Robert Chuckrow.
Chapter 6: Work and Energy  Alternative method for the study of motion  In many ways easier and gives additional information  Kinetic energy: consider.
A body experiences a change in energy when one or more forces do work on it. A body must move under the influence of a force or forces to say work was.
Pre-AP Physics.  Energy is expressed in JOULES (J)  4.19 J = 1 calorie  Energy can be expressed more specifically by using the term WORK(W) Work =
Work, Power, Energy. Work Concepts Work (W) ~ product of the force exerted on an object and the distance the object moves in the direction of the force.
 Work  Energy  Kinetic Energy  Potential Energy  Mechanical Energy  Conservation of Mechanical Energy.
Work, Power & Energy A body builder takes 1 second to pull the strap to the position shown. If the body builder repeats the same motion in 0.5 s, does.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Energy, Work and Power. Work, Energy and Power Objectives: Describe the relationship between work and energy Calculate the work done by a constant applied.
PHY 101: Lecture Work Done by a Constant Force
Potential Energy (PE or U) Definition: The energy that an object has by virtue of its position relative to the surface of the earth. PE = mgh Compare the.
Work, Energy & Power PreAP Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power Honors Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power AP Physics 1.
Work, Energy & Power AP Physics 1.
Work, Energy & Power AP Physics 1.
General Physics 101 PHYS Dr. Zyad Ahmed Tawfik
WORK And Energy and Power.
Work, Energy & Power AP Physics.
Work, Energy, and Power AP Physics C.
Today: Work, Kinetic Energy, Potential Energy
Work, Energy & Power AP Physics B.
Work AP Physics C.
Work, Energy & Power AP Physics 1.
Work, Energy, and Power AP Physics C.
AP Physics C Work, Energy, and Power.
Work, Energy & Power Honors Physics.
Work, Energy, and Power AP Physics C.
Work, Energy & Power AP Physics B.
Work, Energy & Power AP Physics B.
Work, Energy, and Power AP Physics.
Work, Energy & Power Physics.
Work, Energy & Power AP Physics B.
Presentation transcript:

Work, Energy & Power AP Physics B

There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed more specifically by using the term WORK(W) Work = The Scalar Dot Product between Force and Displacement. So that means if you apply a force on an object and it covers a displacement you have supplied ENERGY or done WORK on that object.

Scalar Dot Product? A product is obviously a result of multiplying 2 numbers. A scalar is a quantity with NO DIRECTION. So basically Work is found by multiplying the Force times the displacement and result is ENERGY, which has no direction associated with it. A dot product is basically a CONSTRAINT on the formula. In this case it means that F and x MUST be parallel. To ensure that they are parallel we add the cosine on the end. W = Fx Area = Base x Height

Work The VERTICAL component of the force DOES NOT cause the block to move the right. The energy imparted to the box is evident by its motion to the right. Therefore ONLY the HORIZONTAL COMPONENT of the force actually creates energy or WORK. When the FORCE and DISPLACEMENT are in the SAME DIRECTION you get a POSITIVE WORK VALUE. The ANGLE between the force and displacement is ZERO degrees. What happens when you put this in for the COSINE? When the FORCE and DISPLACEMENT are in the OPPOSITE direction, yet still on the same axis, you get a NEGATIVE WORK VALUE. This negative doesn't mean the direction!!!! IT simply means that the force and displacement oppose each other. The ANGLE between the force and displacement in this case is 180 degrees. What happens when you put this in for the COSINE? When the FORCE and DISPLACEMENT are PERPENDICULAR, you get NO WORK!!! The ANGLE between the force and displacement in this case is 90 degrees. What happens when you put this in for the COSINE?

The Work Energy Theorem Up to this point we have learned Kinematics and Newton's Laws. Let 's see what happens when we apply BOTH to our new formula for WORK! 1.We will start by applying Newton's second law! 2.Using Kinematic #3! 3.An interesting term appears called KINETIC ENERGY or the ENERGY OF MOTION!

The Work Energy Theorem And so what we really have is called the WORK-ENERGY THEOREM. It basically means that if we impart work to an object it will undergo a CHANGE in speed and thus a change in KINETIC ENERGY. Since both WORK and KINETIC ENERGY are expressed in JOULES, they are EQUIVALENT TERMS! " The net WORK done on an object is equal to the change in kinetic energy of the object."

Example W=Fxcos  A 70 kg base-runner begins to slide into second base when moving at a speed of 4.0 m/s. The coefficient of kinetic friction between his clothes and the earth is He slides so that his speed is zero just as he reaches the base (a) How much energy is lost due to friction acting on the runner? (b) How far does he slide? = N -560 J 1.17 m

Example A 5.00 g bullet moving at 600 m/s penetrates a tree trank to a depth of 4.00 cm. (a) Use the work-energy theorem, to determine the average frictional force that stops the bullet.(b) Assuming that the frictional force is constant, determine how much time elapses between the moment the bullet enters the tree and the moment it stops moving -900 J 22,500 N 4.5x10 6 m/s/s 1.33x10 -4 s

Lifting mass at a constant speed Suppose you lift a mass upward at a constant speed,  v = 0 &  K=0. What does the work equal now? Since you are lifting at a constant speed, your APPLIED FORCE equals the WEIGHT of the object you are lifting. Since you are lifting you are raising the object a certain “y” displacement or height above the ground. When you lift an object above the ground it is said to have POTENTIAL ENERGY

Suppose you throw a ball upward What does work while it is flying through the air? Is the CHANGE in kinetic energy POSITIVE or NEGATIVE? Is the CHANGE in potential energy POSITIVE or NEGATIVE? GRAVITY NEGATIVE POSITIVE

ENERGY IS CONSERVED The law of conservation of mechanical energy states: Energy cannot be created or destroyed, only transformed! Energy BeforeEnergy After Am I moving? If yes, K o Am I above the ground? If yes, U o Am I moving? If yes, K Am I above the ground? If yes, U

Energy consistently changes forms

PositionmvUKME 160 kg8 m/s Am I above the ground? Am I moving? NO, h = 0, U = 0 J 0 J Yes, v = 8 m/s, m = 60 kg 1920 J (= U+K) 1920 J

Energy consistently changes forms PositionmvUKME 160 kg8 m/s0 J1920 J 260 kg Energy Before = Energy After KOKO = U + K 1920= (60)(9.8)(1) + (.5)(60)v = v J 1332 = 30v = v 2 v = 6.66 m/s 6.66 m/s 1920 J 1332 J

Energy consistently changes forms PositionmvUKME 160 kg8 m/s0 J1920 J 260 kg6.66 m/s588 J1332 J1920 J 360 kg1920 J Am I moving at the top?No, v = 0 m/s 0 m/s0 J1920 J E B = E A Using position 1 K o = U 1920 = mgh 1920 =(60)(9.8)h h = 3.27 m

Example A 2.0 m pendulum is released from rest when the support string is at an angle of 25 degrees with the vertical. What is the speed of the bob at the bottom of the string? L  Lcos  h h = L – Lcos  h = 2-2cos  h = m E B = E A U O = K mgh o = 1/2mv 2 gh o = 1/2v = v m/s = v

Power One useful application of Energy is to determine the RATE at which we store or use it. We call this application POWER! As we use this new application, we have to keep in mind all the different kinds of substitutions we can make. Unit = WATT or Horsepower