1 Лекция 4. Электронные ускорители для пучково- плазменных технологий. Часть 3 Генераторы низкоэнергетичных сильноточных электронных пучков Установки.

Slides:



Advertisements
Similar presentations
Plasma Window Options and Opportunities for Inertial Fusion Applications Leslie Bromberg Ady Herskovitch* MIT Plasma Science and Fusion Center ARIES meeting.
Advertisements

A. Samarian, W. Tsang, J. Khachan, B. James Complex Plasma Laboratory School of Physics, University of Sydney, NSW 2006, Australia.
High Voltage Laboratory Department of Electrical Engineering, Indian Institute of Technology, Kharagpur.
Areal RF Station A. Vardanyan RF System The AREAL RF system will consist of 3 RF stations: Each RF station has a 1 klystron, and HV modulator,
Overview of Vacuum Systems Tejas Deshpande 24 July, 2014.
W. Udo Schröder, 2004 Instrumentation 1. W. Udo Schröder, 2004 Instrumentation 2 Probes for Nuclear Processes To “see” an object, the wavelength of the.
1 CENTER for EDGE PLASMA SCIENCES C E PS Status of Divertor Plasma Simulator – II (DiPS-II) 2 nd PMIF Workshop Sep. 19, 2011 Julich, Germany H.-J. Woo.
Linacs hall 300 MeV driving electron linac Positron linac.
Status of 500-kV DC gun at JAEA N. Nishimori, R. Nagai, R. Hajima Japan Atomic Energy Agency (JAEA) M. Yamamoto, T. Miyajima, Y. Honda KEK H. Iijima, M.
Electron Beam Source Temescal SFIH – 270 – 2 Fernando Lloret Vieira
Shock wave propagation across the column of dusted glow discharge in different gases. A.S.Baryshnikov, I.V.Basargin, M.V.Chistyakova Ioffe Physico-Technical.
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Vacuum Fundamentals Lecture 5 G.J. Mankey
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Sputter Deposition Lecture 9 G.J. Mankey
PSSC Space Instrument Laboratory Plasma instrument calibration system provides an ion beam of energy range up to 130keV/charge in a clean room To develop.
Preinjector Group Collider-Accelerator Department
Technical studies for the HIE- ISOLDE Frontend upgrade Jacobo Montaño Marie Curie Fellow; CATHI Project * The research project has been supported by a.
Pressure 1 atmosphere ~ 1 bar ~ 760 mm Hg ~ 760 torr ~ 100,000 Pa Ion gauges read in mbar i.e. 1x mbar = 1x atm. Sometimes ion gauges read.
Solar Cell conductive grid and back contact
Gaussian TEL gun progress V. Kamerdzhiev, G. Kuznetsov, V. Shiltsev LARP Collaboration Meeting 10 Danfords on the Sound, Port Jefferson, NY, April 23-25,
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Threshold ionization mass spectroscopy of radicals in RF silane discharge Peter Horvath 5/19/2004 Progress of experiments.
Refining of Liquid Metal by Hydrogen Cold Plasma Shanghai University Weizhong Ding School of Material Science and Engineering Shanghai University.
TRIGGERING EXCIMER LASERS BY PHOTOIONIZATION FROM A CORONA DISCHARGE* Zhongmin Xiong and Mark J. Kushner University of Michigan Ann Arbor, MI USA.
E. Beebe Test EBIS Results EBIS Project Technical Review 1/27/2005 An EBIS-based RHIC Preinjector - Test EBIS Results Ed Beebe Preinjector Group Collider-Accelerator.
FETS Ion Source Installation progress UKNF Meeting Trinity College, September Dan Faircloth, Scott Lawrie, Alan Letchford, Christoph Gabor,
Vacuum Fundamentals 1 atmosphere = 760 mm Hg = kPa 1 torr = 1 mm Hg vacuum range pressure range low 760 ~ 25 torr medium 25~ high ~ 10.
Recent FETS Ion Source Measurements UK Neutrino Factory Plenary Meeting 8-9 June 2010 Rutherford Appleton Laboratory Dan Faircloth Faircloth.
Vacuum Spark Ion Source: High Charge States Ion Beam E.M. Oks, G.Yu. Yushkov, A.G. Nikolaev, and V.P. Frolova High Current Electronics Institute, Siberian.
Scanning Electron Microscope (SEM)
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
October 4-5, Electron Lens Overall Design Alexander Pikin October 4, 2010 Electron Lens.
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
Non Traditional Machining Processes MIME Presented by, µAbhijit Thanedar µNaga Jyothi Sanku µPritam Deshpande µVijayalayan Krishnan µVishwajeet.
THE IOWA IQ-2 Q MACHINE. Schematic diagram of IQ-2 HP-E HP-W Pumping system 30 cm 198 cm 60 cm 63.5 mm 50 cm.
Heavy Ion Fusion Sciences Virtual National Laboratory Warp simulations illustrate the novel acceleration strategy Design Studies for NDCX-II W. M. Sharp,
Gregory ClarkeTechnological Plasmas Research Group Time resolved diagnostics for pulsed magnetron plasmas.
HV Electron Cooling System for NICA Collider
Kévin Pepitone 1CLIC project meeting, CERN, December 1st, 2015 Kevin PEPITONE, BE-RF Drive Beam Injector Gun.
-Plasma can be produced when a laser ionizes gas molecules in a medium -Normally, ordinary gases are transparent to electromagnetic radiation. Why then.
GOLEM operation based on some results from CASTOR
Developments of the FETS Ion Source Scott Lawrie.
September 13, 2007 J. Alessi EBIS Project and EBIS as an ionizer for polarized He-3 ? Jim Alessi Work of E. Beebe, A. Pikin, A. Zelenski, A. Kponou, …
LEPTA: Low Energy Particle Toroidal Accumulator Presented by: Mkhatshwa S. L. Nkabi N. Loqo T. Mbebe N. Supervisor: A. Sidorin SA STUDENT PRACTICE 2010.
Studies on 2.45 GHz microwave ion sources Abhishek Nag IISER, KOLKATA Presented By: G.O. Rodrigues IUAC, New Delhi Supervised By:
RF System and EBIS of RAON
NATIONAL INSTITUTE OF NUCLEAR PHYSICS Legnaro National Laboratories Numerical simulation strategy for the SPES FEBIAD ion source INFN – CISAS collaboration.
Kévin Pepitone 1CLIC workshop, CERN, January 2016 Kevin PEPITONE, BE-RF LEETCHI: Drive Beam Electron Source.
/ 14 (FIP/2-5Ra) Development of DC ultra-high voltage insulation technology for ITER NBI H. Tobari et al., (JAEA) (FIP/2-5Rb) Progress in long pulse production.
PXIE absorber test bench A. Shemyakin, C. Baffes, K. Carlson, B. Hanna, L. Prost, J. Walton November 6, 2012 Project X meeting Test bench description Difficulties:
Pulsed Laser Deposition and Quantum Efficency of Mg films University of Lecce L. Cultrera.
SPES Target Group Data…… INFN-CISAS-CNR collaboration The Ablation Ion Source for refractory metal ion beams A preliminary design.
Understanding Extraction And Beam Transport In The ISIS H - Ion Source D. C. Faircloth, A.P Letchford, C. Gabor, S. Lawrie M. O. Whitehead and T. Wood.
Areal RF Station A. Vardanyan
REXEBIS In the Electron Beam Ion Source (EBIS) the 1+ ions are charge bred. The positive ions are trapped in an electron beam which knocks out electrons.
Seok-geun Lee, Young-hwa An, Y.S. Hwang
& Figures Descriptions
Yeong-Shin Park, Yuna Lee, Kyoung-Jae Chung and Y. S. Hwang
DOE Plasma Science Center Control of Plasma Kinetics
Participation IAP NAS of Ukraine in understanding of vacuum breakdown phenomena Iaroslava Profatilova, V.Baturin, O. Karpenko.
ELENA – Electron Cooler
Magnetron Discharge-Based Boron Ion Source
Electron Beam Welding Welding Technology/4.3 Electron Beam Welding.
Poster T8-We-43 Generation of Boron Ion Beams by Vacuum Arc Ion Source with Lanthanum Hexaboride and Boron Carbide Cathodes V. Frolova, A. Nikolaev, E.
ELECTRIC FIELD MEASUREMENTS IN ns ATMOSPHERIC PRESSURE AIR PLASMA
Parameters of the NF Target
Status of 500-kV DC gun at JAEA
Lecture 14. Diagnostic equipment of the accelerators
NEG-coated gun: Black R30 arc at 227kV, white R30 arc at 164 after refurbishing and second bake Carlos Wednesday, August 10, 2018.
Plans for future electron cooling needs PS BD/AC
Presentation transcript:

1 Лекция 4. Электронные ускорители для пучково- плазменных технологий. Часть 3 Генераторы низкоэнергетичных сильноточных электронных пучков Установки электронно-лучевого распыления НАНОБИМ Compression plasma flows Газоструйный плазмохимический метод

2 Source of Low-Energy High-Current Electron Beams (LEHCEB) Common view of the installation. 1 – vacuum chamber; 2 – HV gate valve; 3 – turbo drag pump TMU 521; 4 – rotary pump DU 20; 5 – valves VAP025; 6 - oil mist filter ONF 25l and condensate separator KAS 25l; 7 – compact full-range gauge PKR 25l; 8 – mass- spectrometer of residual gases MX7304; 9 – e-gun; 10 – high voltage pulse generator; 11 – power supplies and control units of e-gun; 12 – pure argon balloon. Electron Beam Authograph ВТ1- 0 IHCE 4

3 LEHCEB Source 1 – cathode 2 – cathode plasma 3 – double electric layer 4 – anode plasma 5 – collector 6 – solenoid 7 – body of e-beam gun 8 – operating chamber Time-phased waveforms of accelerating voltage (1) 5.3kV/div), diode current (2) 14.4 kA/div), beam current (3) 5kA/div) IHCE Beam parameters electron energy 10 to 40 keV peak electron current up to 30 kA beam pulse duration 2 to 5  S beam energy density per pulse 1-40 J/cm 2 beam cross section up to 50 cm 2 pulse repetition rate up to 0.2 Hz 5

4 Beam parameters electron energy 5 to 25 keV electron energy 5 to 25 keV peak electron current 20 to 250 A peak electron current 20 to 250 A beam 50 to 200  S beam pulse duration 50 to 200  S beam energy density beam energy density per pulse 1 to 70 J/cm 2 per pulse 1 to 70 J/cm 2 spot diameter 2 to 5 cm spot diameter 2 to 5 cm pulse repetition rate 0.3 to 20 Hz pulse repetition rate 0.3 to 20 Hz IHCE Computer-controlled Pulsed e-beam Machine for Surface Treatment 6

5 Block diagram of pulsed e-beam Machine 7

66 Schematic of CRS ® system

7 Electron beam self-focusing control in breakdown plasma by external magnetic field Electron Transport (a)(b)(c) 7 Professors Grigoriev and T. Koval

8 Принципиальная схема установки НАНОБИМ-1 Установки электронно-лучевого распыления НАНОБИМ Институт электрофизики, г. Екатеринбург

9 Технические характеристики установки НАНОБИМ-1 1Потребляемая мощность, кВт, не более5 2Питающая сеть 380В (3ф), 50 Гц 3Длительность импульсов мкс мкс 4Частота подачи импульсов, Гцдо 500 5Ускоряющее напряжение, кВдо 50 кВ 6Ток пучка на мишени, А0,3 7Диаметр пучка на мишени, мм1.5 8 Пределы регулирования давления в камере испарения, Па Скорость натекания газа в камеру испарения, л/часдо 63 10Вес установки, кг, не более700 11Площадь размещения установки, м*м3*3

10 Осциллограммы: 1- ток разряда (4,56 А), 2- ток через ИВН (1А), 3 – ток потерь через диафрагму (0,07А), 4 - ток через мишень (0,4А);

11 Электронная пушка Принцип действия ЭП основан на эмиссии электронов из газоразрядной плазмы под действием электрического поля. Плазма образуется в специальной электродной системе - разрядной камере.

12 Технические характеристики Электронной пушки (ООО «ЭЛИОН») №Характеристика Величин а 1Предельный ток пучка, мА500 2Предельное ускоряющее напряжение, кВ50 3Расход рабочего газа (воздух), см 3 / атм * час Диаметр сфокусированного на изделии пучка на расстоянии от среза фокусирующей линзы, около, мм 0,6 5Угол отклонения пучка, град, не менее (без искажений)15

13 Система проводки пучка до мишени

14 Treatment of non conducting ceramics by electron beam and by ion beam Efim Oks Tomsk, Russia High Current Electronics Institute, Russian Academy of Sciences and State University of Control Systems and Radioelectronics

15 1- hollow cathode, 2- anode, 2- anode, 3- accelerating electrode, 3- accelerating electrode, 4- emission grid, 5, 6 - insulators, 7 – plasma, 8- electron beam Fore-vacuum plasma cathode electron source

16 accelerating electrode hollow cathode anode plasma electron beam Plasma electron gun for operation at fore-pump pressure range Beam current – up to 0,3 A dc Beam energy – up to 20 keV Beam power – up to 6 kW Beam diameter – 3 ÷ 5 mm Working gas – residual atmosphere, Ar, He Gas pressure - 1 ÷ 15 Pa

17 Fore-pump plasma cathode electron gun

18 Installation for testing fore-pump plasma electron gun

19 1 – water input, 2 – case, 3 – water resistor, 4 – hollow cathode, 5 – clamp, 6 – anode, 7 – holder, 8– extractor, 9, 12–water shirts, 10–basic flange, 11– focusing system Design of the electron source Parameters of electron source: Accelerating voltage 2-25 kV Discharge current 0,1 – 1 А Electron beam current 0,1-0,5 А Maximal beam power 7 kW Working gas air, methane, helium Gas pressure 1 – 20 Pa Working regime: DC Beam diameter 2-5 mm

20 View of electron source a – front view, b – back view, c – without body. (a)(c)(c)(b)

21 Generation of ribbon electron beam 1-hollow cathode; 2-insertions; 3-anode; 4,5-insulators; 6-probe; 7-accelerating electrode; 8-movable collector.

22 Accelerating voltage: 1-6 kV Beam current: A Working gas: air, argon Gas pressure: 10 – 60 mTorr Beam cross-section: 250 x 10 mm Ribbon beam fore-pump plasma electron gun (design)

23 Electron gun Electron beam Ribbon beam fore-pump plasma electron gun (design)

24 Electron beam formation Axial magnetic field confines plasma at the system axis allows to increase beam currents

25 1 – electron source, 2 – vacuum chamber, 3 – electron beam, 4 – focusing system, 5 – target, 6 – voltmeter, 7 – plasma, 8 – probe. Beam interaction with isolated target

26 beamtarget Electron beam interaction with quartz target

27 Collector potential depends on relationship between beam cross-section and collector area 1,2,3 – source electrodes, 4 – focusing system, 5 - electron beam, 6 - collector, 7 – insulating holder, 8 - grounded platform. 6