Structures for Discrete-Time Systems 主講人:虞台文. Content Introduction Block Diagram Representation Signal Flow Graph Basic Structure for IIR Systems Transposed.

Slides:



Advertisements
Similar presentations
DSP-CIS Chapter-5: Filter Realization
Advertisements

Digital Signal Processing – Chapter 11 Introduction to the Design of Discrete Filters Prof. Yasser Mostafa Kadah
Discrete-Time Linear Time-Invariant Systems Sections
AMI 4622 Digital Signal Processing
MM3FC Mathematical Modeling 3 LECTURE 3
1 Copyright © 2001, S. K. Mitra Polyphase Decomposition The Decomposition Consider an arbitrary sequence {x[n]} with a z-transform X(z) given by We can.
Implementation of Basic Digital Filter Structures R.C. Maher ECEN4002/5002 DSP Laboratory Spring 2003.
Z-Transform Fourier Transform z-transform. Z-transform operator: The z-transform operator is seen to transform the sequence x[n] into the function X{z},
6.1 signal flow graph representation of linear constant- coefficient difference equations 6.2 basic structures for IIR system direct forms
Finite Impuse Response Filters. Filters A filter is a system that processes a signal in some desired fashion. –A continuous-time signal or continuous.
Discrete-time Systems Prof. Siripong Potisuk. Input-output Description A DT system transforms DT inputs into DT outputs.
Lecture 9: Structure for Discrete-Time System XILIANG LUO 2014/11 1.
Unit III FIR Filter Design
1 Diagramas de bloco e grafos de fluxo de sinal Estruturas de filtros IIR Projeto de filtro FIR Filtros Digitais.
DISCRETE-TIME SIGNALS and SYSTEMS
16 Oct'09Comp30291 Section 31 University of Manchester School of Computer Science Comp30291: Digital Media Processing Section 3 : Discrete-time.
(Lecture #08)1 Digital Signal Processing Lecture# 8 Chapter 5.
Chapter 6 Digital Filter Structures
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE445S Real-Time Digital Signal Processing Lab Fall.
Professor A G Constantinides 1 Signal Flow Graphs Linear Time Invariant Discrete Time Systems can be made up from the elements { Storage, Scaling, Summation.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Biomedical Signal processing Chapter 6 structures for discrete- time system Zhongguo Liu.
Copyright © 2001, S. K. Mitra Digital Filter Structures The convolution sum description of an LTI discrete-time system be used, can in principle, to implement.
Husheng Li, UTK-EECS, Fall  Study how to implement the LTI discrete-time systems.  We first present the block diagram and signal flow graph. 
Oct'04CS32911 CS3291 : Digital Signal Processing '04-05 Section 3 : Discrete-time LTI systems 3.1Introduction: A discrete time system takes discrete time.
CHAPTER 6 Digital Filter Structures
UNIT I. SIGNAL ► Signal is a physical quantity that varies with respect to time, space or any other independent variable Eg x(t)= sin t. Eg x(t)= sin.
Discrete-time Systems Prof. Siripong Potisuk. Input-output Description A DT system transforms DT inputs into DT outputs.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
1 Lecture 1: February 20, 2007 Topic: 1. Discrete-Time Signals and Systems.
EE513 Audio Signals and Systems Complex Oscillator Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Transform Analysis of LTI systems 主講人:虞台文. Content The Frequency Response of LTI systems Systems Characterized by Constant- Coefficient Difference Equations.
EEE 503 Digital Signal Processing Lecture #2 : EEE 503 Digital Signal Processing Lecture #2 : Discrete-Time Signals & Systems Dr. Panuthat Boonpramuk Department.
CHAPTER 2 Discrete-Time Signals and Systems in the Time-Domain
Discrete-Time Signals and Systems
Dan Ellis 1 ELEN E4810: Digital Signal Processing Topic 7: Filter types and structures 1.Some filter types 2.Minimum and maximum phase 3.Filter.
Professor A G Constantinides 1 Finite Wordlength Effects Finite register lengths and A/D converters cause errors in:- (i) Input quantisation. (ii)Coefficient.
More On Linear Predictive Analysis
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
Structures for Discrete-Time Systems
Digital Filter Structures
Technological Educational Institute Of Crete Department Of Applied Informatics and Multimedia Neural Networks Laboratory Slide 1 DISCRETE SIGNALS AND SYSTEMS.
Sampling and Reconstruction The impulse response of an continuous-time ideal low pass filter is the inverse continuous Fourier transform of its frequency.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Signals and Systems Lecture Filter Structure and Quantization Effects.
Chapter 6 Discrete-Time System. 2/90  Operation of discrete time system 1. Discrete time system where and are multiplier D is delay element Fig. 6-1.
EENG 751 3/16/ EENG 751: Signal Processing I Class # 9 Outline Signal Flow Graph Implementation l Fundamentals l System Function l Graph Construction.
Analysis of Linear Time Invariant (LTI) Systems
Chapter 5. Transform Analysis of LTI Systems Section
Digital Signal Processing Lecture 3 LTI System
Finite Impuse Response Filters. Filters A filter is a system that processes a signal in some desired fashion. –A continuous-time signal or continuous.
Prepared by:D K Rout DSP-Chapter 2 Prepared by  Deepak Kumar Rout.
Chapter 2 The z-transform and Fourier Transforms The Z Transform The Inverse of Z Transform The Prosperity of Z Transform System Function System Function.
In summary If x[n] is a finite-length sequence (n  0 only when |n|
Chapter 4 Structures for Discrete-Time System Introduction The block diagram representation of the difference equation Basic structures for IIR system.
Application of digital filter in engineering
Discrete Time Signal Processing Chu-Song Chen (陳祝嵩) Institute of Information Science Academia Sinica 中央研究院 資訊科學研究所.
Structures for Discrete-Time Systems
Digital Signal Processing
CEN352 Dr. Nassim Ammour King Saud University
EEE4176 Applications of Digital Signal Processing
Discrete-time Systems
Lecture 12 Linearity & Time-Invariance Convolution
لجنة الهندسة الكهربائية
Lecture 4: Discrete-Time Systems
UNIT V Linear Time Invariant Discrete-Time Systems
CS3291: "Interrogation Surprise" on Section /10/04
Chapter 6 Discrete-Time System
Zhongguo Liu Biomedical Engineering
Zhongguo Liu Biomedical Engineering
Presentation transcript:

Structures for Discrete-Time Systems 主講人:虞台文

Content Introduction Block Diagram Representation Signal Flow Graph Basic Structure for IIR Systems Transposed Forms Basic Structure for FIR Systems Lattice Structures

Structures for Discrete-Time Systems Introduction

Characterize an LTI System Impulse Response z-Transform Difference Equation

Example Computable Noncomputable

Basic Operations Computable Addition Multiplication Delay In fact, there are unlimited variety of computational structures.

Why Implement Using Different Structures? Finite-precision number representation of a digital computer. Truncation or rounding error. Modeling methods: – Block Diagram – Signal Flow Graph

Block Diagram Representation + x1(n)x1(n) x2(n)x2(n) x 1 (n) + x 2 (n) Adder x(n)x(n) a ax(n) Multiplier x(n)x(n) x(n1)x(n1) z1z1 Unit Delay

Example x(n)x(n) + + b a1a1 z1z1 z1z1 a2a2 y(n)y(n) y(n1)y(n1) y(n2)y(n2)

Higher-Order Difference Equations

Block Diagram Representation (Direct Form I) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n)

+ z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n)

+ z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n)

+ z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n) Implementing zeros Implementing poles

Block Diagram Representation (Direct Form I) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n) How many Adders? How many multipliers? How many delays? How many Adders? How many multipliers? How many delays?

Block Diagram Representation (Direct Form II) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) w(n1)w(n1) w(n2)w(n2) w(nN)w(nN) w(n)w(n) Assume M = N

Block Diagram Representation (Direct Form II) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) w(n1)w(n1) w(n2)w(n2) w(nN)w(nN) w(n)w(n) Assume M = N

Block Diagram Representation (Direct Form II) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) w(n1)w(n1) w(n2)w(n2) w(nN)w(nN) w(n)w(n) Assume M = N Implementing zeros Implementing poles

Block Diagram Representation (Direct Form II) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) w(n1)w(n1) w(n2)w(n2) w(nN)w(nN) w(n)w(n) Assume M = N How many Adders? How many multipliers? How many delays? How many Adders? How many multipliers? How many delays?

Block Diagram Representation (Canonic Direct Form) b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) Assume M = N

Block Diagram Representation (Canonic Direct Form) b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) Assume M = N How many Adders? How many multipliers? How many delays? max(M, N) How many Adders? How many multipliers? How many delays? max(M, N)

Structures for Discrete-Time Systems Signal Flow Graph

Nodes And Branches wj(n)wj(n) wk(n)wk(n) Associated with each node is a variable or node value.

Nodes And Branches wj(n)wj(n) wk(n)wk(n) Brach ( j, k ) Each branch has an input signal and an output signal. Input w j (n) Output: A linear transformation of input, such as constant gain and unit delay.

More on Nodes wj(n)wj(n) wk(n)wk(n) An internal node serves as a summer, i.e., its value is the sum of outputs of all branches entering the node.

Source Nodes Nodes without entering branches xj(n)xj(n)wk(n)wk(n) Source node j

Sink Nodes Nodes that have only entering branches yk(n)yk(n)wj(n)wj(n) Sink node k

Example x(n)x(n) y(n)y(n)w1(n)w1(n) w2(n)w2(n) a b c d e Source Node Sink Node

Block Diagram vs. Signal Flow Graph x(n)x(n) + a z1z1 + b1b1 b0b0 w(n)w(n)y(n)y(n) x(n)x(n) w1(n)w1(n) w2(n)w2(n)w3(n)w3(n) a b1b1 b0b0 z1z w4(n)w4(n) y(n)y(n)

x(n)x(n) + a z1z1 + b1b1 b0b0 w(n)w(n)y(n)y(n) x(n)x(n) w1(n)w1(n) w2(n)w2(n)w3(n)w3(n) a b1b1 b0b0 z1z w4(n)w4(n) y(n)y(n)

Structures for Discrete-Time Systems Basic Structure for IIR Systems

Criteria Reduce the number of constant multipliers – Increase speed Reduce the number of delays – Reduce the memory requirement Modularity: VLSI design The effects of finite register length and finite- precision arithmetic.

Basic Structures Direct Forms Cascade Form Parallel Form

Direct Forms

Direct Form I b0b0 b1b1 x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nN)x(nN) y(n)y(n) b2b2 b N-1 bNbN x(n  N+1) a1a1 a2a2 a N-1 aNaN y(n1)y(n1) y(n2)y(n2) y(nN)y(nN) y(n  N+1) z1z1 z1z1 z1z1 z1z1 z1z1 z1z1 v(n)v(n)

Direct Form I b0b0 b1b1 x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nN)x(nN) y(n)y(n) b2b2 b N-1 bNbN x(n  N+1) a1a1 a2a2 a N-1 aNaN y(n1)y(n1) y(n2)y(n2) y(nN)y(nN) y(n  N+1) z1z1 z1z1 z1z1 z1z1 z1z1 z1z1 v(n)v(n)

Direct Form II x(n)x(n) y(n)y(n) w(n)w(n) b0b0 b1b1 b2b2 b N-1 bNbN a1a1 a2a2 a N-1 aNaN z1z1 z1z1 z1z1

Direct Form II x(n)x(n) y(n)y(n) w(n)w(n) b0b0 b1b1 b2b2 b N-1 bNbN a1a1 a2a2 a N-1 aNaN z1z1 z1z1 z1z1

Example x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 z1z  x(n)x(n) y(n)y(n) z1z1 z1z  Direct Form I Direct Form II

Cascade Form

2nd Order System 2nd Order System 2nd Order System 2nd Order System 2nd Order System 2nd Order System

Cascade Form x(n)x(n)y(n)y(n) z1z1 z1z1 a 11 a 21 b 11 b 21 b 01 z1z1 z1z1 a 12 a 22 b 12 b 22 b 01 z1z1 z1z1 a 13 a 23 b 13 b 23 b 03

Another Cascade Form

Parallel Form

Real Poles Complex Poles Poles at zero Group Real Poles

Parallel Form z1z1 z1z1 a1ka1k a2ka2k e0ke0k e1ke1k

x(n)x(n) y(n)y(n)

Example 8 x(n)x(n)y(n)y(n) z1z1 z1z  77

Example z1z x(n)x(n)y(n)y(n) z1z  25

Structures for Discrete-Time Systems Transposed Forms

Signal Flow Graph Transformation To transform signal graphs into different forms while leaving the overall system function between input and output unchanged.

Transposition of Signal Flow Graph Reverse the directions of all arrows. Changes the roles of input and output. x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n) z1z1 a

Transposition of Signal Flow Graph x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n) z1z1 a Are there any relations between the two systems?

Example: z1z1 a x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n)

Transposition of Signal Flow Graph Reverse the directions of all arrows. Changes the roles of input and output. x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n) z1z1 a Detail proof see reference

Structures for Discrete-Time Systems Basic Structure for FIR Systems

FIR For causal FIR systems, the system function has only zeros.

Direct Form x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M)

x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M) Direct Form x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M)

x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M) Direct Form x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M)

Cascade Form

x(n)x(n) y(n)y(n) z1z1 z1z1 b 01 b 11 b 21 z1z1 z1z1 b 02 b 12 b 22 z1z1 z1z1 b 1Ms b 2Ms b 0Ms

M is evenM is odd h(M  n) = h(n) h(M  n) =  h(n) Structures for Linear Phase Systems A generalized linear phase system satisfies: h(M  n) = h(n) for n = 0,1,…,M h(M  n) =  h(n) for n = 0,1,…,M or Type I Type III Type II Type VI

Type I

x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 z1z1 z1z1 z1z1 h(M/2) h(M/2  1) h(0) h(1)h(2)

Type II, III and VI Construct them in a similar manner by yourselves.

Structures for Discrete-Time Systems Lattice Structures

FIR Lattice Consider x(n)=  (n), one will see

FIR Lattice Consider x(n)=  (n), one will see

FIR Lattice Consider x(n)=  (n), one will see

FIR Lattice Define Consider x(n)=  (n), one will see

FIR Lattice Show that Define

FIR Lattice i=1: Show that

FIR Lattice i = n: Assumed true Show that i = n+1 also true. Prove

FIR Lattice =

m= k1k1 k2k2 k3k3 k4k4 k5k5 k6k6 m=1 m=2 m=3 m=4 m=5 m=6 Given the lattice, to find A(z).

FIR Lattice Given A(z), to find the lattice. m= m=1 m=2 m=3 m=4 m=5 m=6

m= m=1 m=2 m=3 m=4 m=5 m=6 FIR Lattice Given A(z), to find the lattice.

Example m=0 m=1 m=2 m=  

Example   m=0 m=1 m=2 m=  

Inverse Filter

All-Pole Filter

Example    

Example    

Stability of All-Pole Filter All zeros of A(z) have to lie within the unit circle. Necessary and sufficient conditions: All of k-parameters k i ’s satisfy |k i | < 1.

Normalized Lattice

Section i

Normalized Lattice Section N Section N  1 Section 1 Section i

Normalized Lattice Section i Three-Multiplier Form

Normalized Lattice Four-Multiplier, Normalized Form Four-Multiplier, Kelly-Lochbaum Form Three-Multiplier Form

Normalized Lattice Section N Section N  1 Section 1 Three-Multiplier Form

Normalized Lattice Section N Section N  1 Section 1 Four-Multiplier, Normalized Form

Normalized Lattice Section N Section N  1 Section 1 Four-Multiplier, Kelly-Lochbaum Form

Lattice Systems with Poles and Zeros Section N  1 Section 1 Section N c0c0 c1c1 cN2cN2 cN1cN1 cNcN

Lattice Systems with Poles and Zeros Section N  1 Section 1 Section N c0c0 c1c1 cN2cN2 cN1cN1 cNcN

Lattice Systems with Poles and Zeros

Example    c3c3 c2c2 c1c1 c0c0

   c3c3 c2c2 c1c1 c0c0 Example m=0 m=1 m=2 m=  

   Example