Variational data assimilation for morphodynamic model parameter estimation Department of Mathematics, University of Reading: Polly Smith *, Sarah Dance,

Slides:



Advertisements
Similar presentations
1 -Classification: Internal Uncertainty in petroleum reservoirs.
Advertisements

Data assimilation and Morphodynamic Modelling Of Morecambe Bay Gillian Thornhill 1, Tania Scott 1, Sarah Dance 2, David Mason 1, Nancy Nichols 2, Michael.
P1.8 QUANTIFYING AND REDUCING UNCERTAINTY BY EMPLOYING MODEL ERROR ESTIMATION METHODS Dusanka Zupanski Cooperative Institute for Research in the Atmosphere.
Polly Smith, Alison Fowler, Amos Lawless School of Mathematical and Physical Sciences, University of Reading Exploring coupled data assimilation using.
Inversion of coupled groundwater flow and heat transfer M. Bücker 1, V.Rath 2 & A. Wolf 1 1 Scientific Computing, 2 Applied Geophysics Bommerholz ,
Motivation The Carolinas has had a tremendous residential and commercial investment in coastal areas during the past 10 years. However rapid development.
Targetting and Assimilation: a dynamically consistent approach Anna Trevisan, Alberto Carrassi and Francesco Uboldi ISAC-CNR Bologna, Italy, Dept. of Physics.
Observers and Kalman Filters
Presenter: Yufan Liu November 17th,
Tyre and Vehicle Model Identification using Identifying Kalman Filters
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
A Concept of Environmental Forecasting and Variational Organization of Modeling Technology Vladimir Penenko Institute of Computational Mathematics and.
EPSRC Grant: EP/FP202511/1 Probabilistic Forecasting for Local Flooding David Leedal, Paul Smith, Keith Beven and Peter Young Lancaster.
Tracking using the Kalman Filter. Point Tracking Estimate the location of a given point along a sequence of images. (x 0,y 0 ) (x n,y n )
Discriminative Training of Kalman Filters P. Abbeel, A. Coates, M
WATER TEMPERATURE MODEL FOR BRANCHED RIVER SYSTEMS.
Carbon Flux Bias Estimation at Regional Scale using Coupled MLEF-PCTM model Ravindra Lokupitiya Department of Atmospheric Science Colorado State University.
Estimation and the Kalman Filter David Johnson. The Mean of a Discrete Distribution “I have more legs than average”
Helsinki University of Technology Adaptive Informatics Research Centre Finland Variational Bayesian Approach for Nonlinear Identification and Control Matti.
Muhammad Moeen YaqoobPage 1 Moment-Matching Trackers for Difficult Targets Muhammad Moeen Yaqoob Supervisor: Professor Richard Vinter.
Kalman filtering techniques for parameter estimation Jared Barber Department of Mathematics, University of Pittsburgh Work with Ivan Yotov and Mark Tronzo.
The Inverse Regional Ocean Modeling System: Development and Application to Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E., Moore, A., H.
Colorado Center for Astrodynamics Research The University of Colorado 1 STATISTICAL ORBIT DETERMINATION Satellite Tracking Example of SNC and DMC ASEN.
THEORY ABSTRACT The equations that are the basis of the DRAMBUIE scour model were developed at H.R. Wallingford (a U.K. civil engineering firm) and have.
CSDA Conference, Limassol, 2005 University of Medicine and Pharmacy “Gr. T. Popa” Iasi Department of Mathematics and Informatics Gabriel Dimitriu University.
Assimilation of HF Radar Data into Coastal Wave Models NERC-funded PhD work also supervised by Clive W Anderson (University of Sheffield) Judith Wolf (Proudman.
Probabilistic Robotics Bayes Filter Implementations Gaussian filters.
Modelling 1: Basic Introduction. What constitutes a “model”? Why do we use models? Calibration and validation. The basic concept of numerical integration.
Dusanka Zupanski And Scott Denning Colorado State University Fort Collins, CO CMDL Workshop on Modeling and Data Analysis of Atmospheric CO.
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones Lecture 18: Minimum Variance Estimator.
2004 SIAM Annual Meeting Minisymposium on Data Assimilation and Predictability for Atmospheric and Oceanographic Modeling July 15, 2004, Portland, Oregon.
Applications of optimal control and EnKF to Flow Simulation and Modeling Florida State University, February, 2005, Tallahassee, Florida The Maximum.
UNCLASSIFIED Assimilating Concentration Data into Dispersion Models with a Genetic Algorithm Sue Ellen Haupt Kerrie J. Long Anke Beyer-Lout George S. Young.
Assimilating chemical compound with a regional chemical model Chu-Chun Chang 1, Shu-Chih Yang 1, Mao-Chang Liang 2, ShuWei Hsu 1, Yu-Heng Tseng 3 and Ji-Sung.
MODEL ERROR ESTIMATION EMPLOYING DATA ASSIMILATION METHODOLOGIES Dusanka Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University.
Adaptive Hybrid EnKF-OI for State- Parameters Estimation in Contaminant Transport Models Mohamad E. Gharamti, Johan Valstar, Ibrahim Hoteit European Geoscience.
Mechanics and modeling of flow, sediment transport, and morphologic change in riverine lateral separation zones Brandy Logan, Jonathan Nelson, Rich McDonald,
Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.
Secure In-Network Aggregation for Wireless Sensor Networks
Errors, Uncertainties in Data Assimilation François-Xavier LE DIMET Université Joseph Fourier+INRIA Projet IDOPT, Grenoble, France.
Quality of model and Error Analysis in Variational Data Assimilation François-Xavier LE DIMET Victor SHUTYAEV Université Joseph Fourier+INRIA Projet IDOPT,
NCAF Manchester July 2000 Graham Hesketh Information Engineering Group Rolls-Royce Strategic Research Centre.
Unscented Kalman Filter 1. 2 Linearization via Unscented Transform EKF UKF.
1D Long-term Modelling of Longshore Sediment Transport
IMPACT 3-5th November 20044th IMPACT Project Workshop Zaragoza 1 Investigation of extreme flood Processes and uncertainty IMPACT Investigation of Extreme.
Determining Key Model Parameters of Rapidly Intensifying Hurricane Guillermo(1997) Using the Ensemble Kalman Filter Chen Deng-Shun 16 Apr, 2013, NCU Godinez,
Data assimilation applied to simple hydrodynamic cases in MATLAB
Tracking Mobile Nodes Using RF Doppler Shifts
Surface Water Virtual Mission Dennis P. Lettenmaier, Kostas Andreadis, and Doug Alsdorf Department of Civil and Environmental Engineering University of.
A Random Subgrouping Scheme for Ensemble Kalman Filters Yun Liu Dept. of Atmospheric and Oceanic Science, University of Maryland Atmospheric and oceanic.
Colorado Center for Astrodynamics Research The University of Colorado 1 STATISTICAL ORBIT DETERMINATION Kalman Filter with Process Noise Gauss- Markov.
Potential for estimation of river discharge through assimilation of wide swath satellite altimetry into a river hydrodynamics model Kostas Andreadis 1,
Assimilation of radar observations in mesoscale models using approximate background error covariance matrices (2006 Madison Flood Case) 1.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
The Measurement of Bed Load Sediment Transport in Rivers and Estuaries using Stationary and Moving ADCP Methods (using workhorse, channel master and stream.
Probabilistic Robotics Bayes Filter Implementations Gaussian filters.
Carbon Cycle Data Assimilation with a Variational Approach (“4-D Var”) David Baker CGD/TSS with Scott Doney, Dave Schimel, Britt Stephens, and Roger Dargaville.
STATISTICAL ORBIT DETERMINATION Coordinate Systems and Time Kalman Filtering ASEN 5070 LECTURE 21 10/16/09.
Data Assimilation Theory CTCD Data Assimilation Workshop Nov 2005
Progress on work package 1
On Optimal Distributed Kalman Filtering in Non-ideal Situations
PSG College of Technology
Unscented Kalman Filter
Surface Water Virtual Mission
Kalman Filter فيلتر كالمن در سال 1960 توسط R.E.Kalman در مقاله اي تحت عنوان زير معرفي شد. “A new approach to liner filtering & prediction problem” Transactions.
Hellenic Open University
Bayes and Kalman Filter
Kalman Filtering COS 323.
Sarah Dance DARC/University of Reading
Presentation transcript:

Variational data assimilation for morphodynamic model parameter estimation Department of Mathematics, University of Reading: Polly Smith *, Sarah Dance, Mike Baines, Nancy Nichols, Environmental Systems Science Centre, University of Reading: Tania Scott * This project is funded under the Natural Environment Research Council (NERC) Flood Risk From Extreme Events (FREE) programme, with additional funding provided by the Environment Agency as part of the CASE (Co-operative Awards in Science and Engineering) scheme. Thanks also to HR Wallingford for visits and useful discussions.

Outline Background/ motivation -what is morphodynamic modelling? -why do we need morphodynamic models? A simple 1D morphodynamic model Data assimilation and parameter estimation -how can we use data assimilation to estimate uncertain model parameters? -how do we model the background error covariances? Results Summary

Terminology Bathymetry - the underwater equivalent to topography -coastal bathymetry is dynamic and evolves with time -water action erodes, transports, and deposits sediment, which changes the bathymetry, which alters the water action, and so on Morphodynamics - the study of the evolution of the bathymetry in response to the flow induced sediment transport Morphodynamic prediction -why? -how?

Kent channel Channel movement –impacts on habitats in the bay –affects access to ports –has implications for flooding during storm events 1960s 1970s km Picture courtesy of Nigel Cross, Lancaster City Council

Morphodynamic modelling Operational coastal flood forecasting is limited near-shore by lack of knowledge of evolving bathymetry –but it is impractical to continually monitor large coastal areas Modelling is difficult –longer term changes are driven by shorter term processes –uncertainty in initial conditions and parameters An alternative approach is to use data assimilation

Parameter estimation Model equations depend on parameters -exact values are unknown -inaccurate parameter values can lead to growth of model error -affects predictive ability of the model How do we estimate these values a priori? -theoretical values -calibration or... data assimilation -choose parameters based on observations -state augmentation: model parameters are estimated alongside the model state

Simple 1D model Based on the sediment conservation equation where z(x,t) is the bathymetry, t is time, q is the sediment transport rate in the x direction and  is the sediment porosity. For the sediment transport rate we use the power law where u(x,t) is the depth averaged current and A and n are parameters whose values need to be set

If we assume that water flux ( F ) and height ( H ) are constant we can rewrite the sediment conservation equation as where a(z, H, F,ε,A,n) is the advection velocity or bed celerity.

Can we use data assimilation to estimate the parameters A and n?

model run with incorrect parameters & without data assimilation red line = correct parameters blue line = incorrect parameters (A over estimated, n under estimated)

State augmentation Dynamical system model (discrete, non-linear, time invariant) Parameter evolution Augmented system model

Observations in terms of the augmented system... where

3D Var Cost function: B ̃ and R are the covariance matrices of the background and observation errors. B zz state background error covariance B pp parameter background error covariance B zp state parameter error cross covariance

augmented gain matrix: state & parameter updates:

State-parameter cross covariances The Extended Kalman filter (EKF) State forecast: Error covariance forecast: where

Error covariance forecast: a new hybrid approach...

for our simple 2 parameter model

Model setup Assume perfect model and observations Identical twin experiments -reference solution generated using Gaussian initial data and parameter values A = ms -1 and n = 3.4 Use incorrect model inputs -inaccurate initial bathymetry -inaccurate parameter estimates 3D Var algorithm is applied sequentially -observations taken at fixed grid points & assimilated every hour -the cost function is minimized iteratively using a quasi-Newton descent algorithm Covariances - B zz fixed - B zp time varying

without data assimilation with data assimilation …

without data assimilation with data assimilation …

Summary Presented a novel approach to model parameter estimation using data assimilation -demonstrated the technique using a simple morphodynamic model Results are very encouraging -scheme is capable of recovering near-perfect parameter values -improves model performance What next …? -can our scheme be successfully applied to more complex models? -can we say anything about the convergence of the system?

Questions?

Simple Models of Changing Bathymetry with Data Assimilation P.J Smith, M.J. Baines, S.L. Dance, N.K. Nichols and T.R. Scott Department of Mathematics, University of Reading Numerical Analysis Report 10/2007* Data Assimilation for Parameter Estimation with Application to a Simple Morphodynamic Model P.J Smith, M.J. Baines, S.L. Dance, N.K. Nichols and T.R. Scott Department of Mathematics, University of Reading Mathematics Report 2/2008* Variational data assimilation for parameter estimation: application to a simple morphodynamic model P.J Smith, M.J. Baines, S.L. Dance, N.K. Nichols and T.R. Scott Submitted to Ocean Dynamics PECS 2008 Special Issue* *available from