Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.

Slides:



Advertisements
Similar presentations
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Advertisements

The state-of-art based GaAs HBT
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
High speed InP-based heterojunction bipolar transistors Mark Rodwell University of California, Santa Barbara ,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
1 LW 6 Week 6 February 26, 2015 UCONN ECE 4211 F. Jain Review of BJT parameters and Circuit Model HBT BJT Design February 26, 2015 LW5-2 PowerPoint two.
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Ultra high speed heterojunction bipolar transistor technology Mark Rodwell University of California, Santa Barbara ,
Indium Phosphide Bipolar Integrated Circuits: 40 GHz and beyond Mark Rodwell University of California, Santa Barbara ,
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
InP HBT Digital ICs and MMICs in the GHz band , fax Mark Rodwell University of California, Santa.
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits ,
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Submicron Transferred-Substrate Heterojunction Bipolar Transistors M Rodwell, Y Betser,Q Lee, D Mensa, J Guthrie, S Jaganathan, T Mathew, P Krishnan, S.
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
Introduction to GaAs HBT and current technologies
20th IPRM, MAY 2008, Versallies-France
Lower Limits To Specific Contact Resistivity
High Transconductance Surface Channel In0. 53Ga0
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Presentation transcript:

Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, , USA Xiao-Ming Fang, Dmitri Loubychev, Ying Wu, Joel M. Fastenau, and Amy Liu IQE Inc. 119 Bethlehem, PA 18015, USA , fax 560 GHz f t, f max InGaAs/InP DHBT in a novel dry-etched emitter process

Latest UCSB DHBT w/ refractory emitter metal Scalable below 128 nm width New refractory metal emitter technology 250 nm emitter width First RF results Simultaneously 560 GHz f t & f max BVceo = 3.3V

Standard figures of merit / Effects of Scaling Small signal current gain cut-off frequency (from H 21 ) Charging time for digital logic Power gain cut-off frequency (from U) Thinning epitaxial layers ( vertical scaling ) reduces base and collector transit times… But increases capacitances Reduce R bb and C cb, through lateral scaling More efficient heat transfer

emitter nm width  m 2 access  base width,  m 2 contact  collector nm thick, mA/  m 2 current density V, breakdown f  GHz f max GHz power amplifiers GHz digital clock rate GHz (static dividers) What parameters are needed for THz HBTs? ✓ ✓ ✓ ✓ ✓ ✓ ✓  c <1  m 2 U. Singisetti DRC 2007 Ohmic contacts and epitaxial scaling good for 64nm HBT node! Develop technology suitable for aggressive lateral scaling

TiW emitter dry etch formation TiW Cr Lift-off no good at <300 nm! Dry etching – very high aspect ratio Optical Lithography O 2 plasma ICP Cl 2 O 2 etch Mask Plate SiO 2 ICP SF 6 /Ar etch Refractory Ti 0.1 W 0.9 is thermally stable  c < 1   m 2 possible – no degradation of contact resistance for anneals up to 400C

TiW dry etching results nm emitters routinely formed Demonstrated scalability down to 150 nm ~ nm tapering during etch sets scaling limit Emitter metal height ~ nm 150 nm

Wet etch does not scale {111}A planes – slow {101}A planes – fast Minimum emitter width ~ 150 nm! Collector Base base InP emitter InGaAs emitter TiW metal

Hybrid dry/wet etch Anisotropic dry etch InGaAs, part of InP emitter, Cl 2 N 2 Formidable problem – InCl x formation Extensive UCSB know how on dry etching Solution – low power ICP 200C, low Cl 2 concentration Short InP wet etch TiW InGaAs InP InGaAs Base

Current UCSB TiW emitter process 5 nm Ti layer for improved adhesion 25 nm SiN x sidewalls protects Ti/TiW during Cl 2 and BHF etch, improves adhesion Standard triple mesa BCB pasivation Emitter prior to InP wet etch

Layer structure nm collector DHBT Thickness (nm) MaterialDoping cm -3 Description 30In 0.53 Ga 0.47 As 5  : Si Emitter cap 10In 0.53 Ga 0.47 As 4  : Si Emitter 60InP 3  : Si Emitter 10InP 1.2  : Si Emitter 20InP 1.0  : Si Emitter 22InGaAs 5-9  : C Base 5.0In 0.53 Ga 0.47 As 2  : Si Setback 11InGaAs / InAlAs 2  : Si B-C Grade 3InP 6.2  : Si Pulse doping 51InP 2  : Si Collector 5InP 1  : Si Sub Collector 5In 0.53 Ga 0.47 As 2  : Si Sub Collector 300InP 2  : Si Sub Collector SubstrateSI : InP Objective : Thin collector and base for decreased electron transit time Collector doping designed for high Kirk threshold, designed for 128 nm node Setback and grade thinned for improved breakdown V be = 1.0 V, V cb = 0.0 V J e = 0, 14, 21 mA/  m 2 J e = 0mA/  m 2, 15mA/  m 2, 30mA/  m 2

RF & DC data –70 nm collector, 22 nm base InP Type-I DHBT Emitter width ~ 250 nm First reported device with f t, f max > 500 GHz BV CEO ~ 3.3 V, BV CBO = 3.9 V ( J e,c = 15kA/cm 2 ) Emitter contact (from RF extraction), R cont < 5  m 2 Base: R sheet = 780  /sq, R cont ~ 15  m 2 Collector: R sheet = 11.1  /sq, R cont ~ 10.1  m 2

RF data –70 nm collector, 22 nm base InP Type-I DHBT No detectable increase in C cb for high J e Indicates that Kirk threshold is not reached Device performance limited by self heating? Further scaling needed for better thermal performance! Kirk effect increases C cb... even in DHBTs C cb / J e

Breakdown performance of InP HBTs Type I DHBT and Type II DHBT – similar BV ceo Type II DHBTs has low f max due to base resistance SHBT have substantially lower breakdown Type I DHBT Type II DHBT

Current status of fast transistors nm 600nm nm

Emitter Process will scale to 128 nm & below Emitter-base junction has been scaled down to 64 nm Pure W emitter- no tapering 61 nm emitter-base junction! Tungsten Emitter metal peeled off during cross section cleave..

Conclusion 128 nm node→ 700 GHz ft, xx GHz fmax feasble challenges: contact resistivity, robust deep submicron processes Dry etch based DHBT emitter process → sub 100 nm junctions feasible First RF results: 250nm junctions: simultaneous f t,f max ~ 560 GHz 125 nm devices should come soon ! … THz before next DRC? This work was supported by DARPA SWIFT program and a Swedish Research Council grant.