1 IMM472 資料探勘 陳春賢. 2 Lecture I Class Introduction.

Slides:



Advertisements
Similar presentations
IS5152 Decision Making Technologies
Advertisements

2015/6/1Course Introduction1 Welcome! MSCIT 521: Knowledge Discovery and Data Mining Qiang Yang Hong Kong University of Science and Technology
楊竹星 國立成功大學電機工程系 98學年第一學期
SAK 5609 DATA MINING Prof. Madya Dr. Md. Nasir bin Sulaiman
1 Data Mining Techniques Instructor: Ruoming Jin Fall 2006.
Introduction to Data Mining with Case Studies
Introduction to WEKA Aaron 2/13/2009. Contents Introduction to weka Download and install weka Basic use of weka Weka API Survey.
CS : Artificial Intelligence: Representation and Problem Solving Fall 2002 Prof. Tuomas Sandholm Computer Science Department Carnegie Mellon University.
1 Introduction to Data Mining Instructor: Y.T. Wang ( 王耀德 ) Office: 主顧 686 Phone: (04) # Office hours:
CS 5941 CS583 – Data Mining and Text Mining Course Web Page 05/cs583.html.
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Intelligent Systems Lecture 23 Introduction to Intelligent Data Analysis (IDA). Example of system for Data Analyzing based on neural networks.
CSCI 347 – Data Mining Lecture 01 – Course Overview.
Computer Network Fundamentals CNT4007C
COMP Introduction to Programming Yi Hong May 13, 2015.
Object Oriented Programming (OOP) Design Lecture 1 : Course Overview Bong-Soo Sohn Assistant Professor School of Computer Science and Engineering Chung-Ang.
Course Title Database Technologies Instructor: Dr ALI DAUD Course Credits: 3 with Lab Total Hours: 45 approximately.
Course Introduction Software Engineering
CMSC 671 Principles of Artificial Intelligence Course Overview Fall 2015.
CS525 DATA MINING COURSE INTRODUCTION YÜCEL SAYGIN SABANCI UNIVERSITY.
Machine Learning Lecture 1. Course Information Text book “Introduction to Machine Learning” by Ethem Alpaydin, MIT Press. Reference book “Data Mining.
Overviews of ITCS 6161/8161: Advanced Topics on Database Systems Dr. Jianping Fan Department of Computer Science UNC-Charlotte
Internet English Instructor: Dr. Yan-Ling Hwang, Assistant Professor Class Time : Tuesday 10:10 a.m. - 12:00 p.m. Classroom : 電腦教室 Office : A26 應語系研究室.
Syllabus CS479(7118) / 679(7112): Introduction to Data Mining Spring-2008 course web site:
CGS 1000-FALL 2009 Intro to Computers & Tech. Topics  Syllabus  Faculty Website  Campus Cruiser Introduction to Computers and Technology.
Data Warehousing/Mining 1 Data Warehousing/Mining Comp 150DW Course Overview Instructor: Dan Hebert.
Database Design CS562 Fall CS562 Database Design Instructor : Professor Chin-Wan Chung Office : Rm 3406 Tel : 3537
Lecture Section 001 Spring 2008 Mike O’Dell CSE 1301 Computer Literacy.
Object Oriented Programming (OOP) Design Lecture 1 : Course Overview Bong-Soo Sohn Associate Professor School of Computer Science and Engineering Chung-Ang.
1 Technologies for Electronic Commerce and EBusiness Walt Scacchi, Ph.D. FEMBA 290 Winter 2003.
Introduction of Data Mining and Association Rules cs157 Spring 2009 Instructor: Dr. Sin-Min Lee Student: Dongyi Jia.
SCHILLER INTERNATIONAL UNIVERSITY
Open Systems and Electronic Commerce
資訊科技專案管理 授課教師 : 王耀德 研究室 : 靜宜大學 二研 105 電話 : (04) # Web site:
1 IMM472 資料探勘 陳春賢. 2 Lecture I Class Introduction.
IST 210: Organization of Data
MAIN BOOKS 1. DATA WAREHOUSING IN THE REAL WORLD : Sam Anshory & Dennis Murray, Pearson 2. DATA MINING CONCEPTS AND TECHNIQUES : Jiawei Han & Micheline.
General Information 439 – Data Mining Assist.Prof.Dr. Derya BİRANT.
Introduction to Computer Programming (FIT-I pro) J. H. Wang Sep. 17, 2007.
Course Overview for Compilers J. H. Wang Sep. 14, 2015.
ITIS 4510/5510 Web Mining Spring Overview Class hour 5:00 – 6:15pm, Tuesday & Thursday, Woodward Hall 135 Office hour 3:00 – 5:00pm, Tuesday, Woodward.
1 SBM411 資料探勘 陳春賢. 2 Lecture I Class Introduction.
Course Overview for Compilers J. H. Wang Sep. 20, 2011.
CPE542: Pattern Recognition Course Introduction Dr. Gheith Abandah د. غيث علي عبندة.
CSCE 5073 Section 001: Data Mining Spring Overview Class hour 12:30 – 1:45pm, Tuesday & Thur, JBHT 239 Office hour 2:00 – 4:00pm, Tuesday & Thur,
1 Advanced Database System Design Instructor: Ruoming Jin Fall 2010.
General Information Course Id: COSC6368 Artificial Intelligence Professor: Ricardo Vilalta Classroom:AH 110 Telephone: (713)
CEN 137 Computer Literature and Skills INTERNATIONAL BURCH UNIVERSITY DEPARTMENT of INFORMATION TECHNOLOGIES Dr. A. Turan Özcerit
1 SBM411 資料探勘 陳春賢. 2 Lecture I Class Introduction.
Introduction to Computer Science Kun-Mao Chao ( 趙坤茂 ) Department of Computer Science and Information Engineering National Taiwan University, Taiwan ( 台大資訊工程系.
資料通訊 Data Communication Fall 2011, NTNU-CSIE. General Information Time: Tuesday 2:10pm~5:00pm Place: S203 Instructor: 陳伶志 Ling-Jyh Chen Phone:
Waqas Haider Bangyal. 2 Source Materials “ Data Mining: Concepts and Techniques” by Jiawei Han & Micheline Kamber, Second Edition, Morgan Kaufmann, 2006.
ITIS 5160 Applied Databases Fall Overview Class hour 6:30 – 9:15pm, Wedn, Woodward Hall 125 Office hour 3:00 – 5:00pm, Wedn Instructor - Dr. Xintao.
ITIS 5160 Applied Databases Fall Overview Class hour 9:30am – 12:15pm, Friday, Woodward 120 Office hour 1:30 – 2:30pm, Wednesday Instructor - Dr.
系統程式 System Programming
CSE Wireless and Adhoc networks Instructor: Ayman Alharbi Computer Engineering Dept. (Head of dept. ) Why ?
Sotarat Thammaboosadee, Ph.D. EGIT563- Data Mining Course Outline.
DATA MINING: LECTURE 1 By Dr. Hammad A. Qureshi Introduction to the Course and the Field There is an inherent meaning in everything. “Signs for people.
1 SBM411 資料探勘 陳春賢. 2 Lecture I Class Introduction.
Course Overview 1 MAT 279 Data Communication and the Internet Prof. Shamik Sengupta Office 4210 N
DATABASE SYSTEM COURSE SYLLABUS Ghulam Imaduddin Informatics Engineering Muhammadiyah Jakarta University Database System by Ghulam I1.
CSC 4740 / 6740 Fall 2016 Data Mining Instructor: Yubao Wu Fall 2016.
CENG 707 Data Structures and Algorithms
System Administration Practice
COMP1942 Exploring and Visualizing Data Overview
Data Mining: Concepts and Techniques Course Outline
Dept. of Computer Science University of Liverpool
Welcome! Knowledge Discovery and Data Mining
CSCE 4143 Section 001: Data Mining Spring 2019.
Presentation transcript:

1 IMM472 資料探勘 陳春賢

2 Lecture I Class Introduction

3 Instructor Information  姓名 : 陳春賢  Ph.D. from Iowa State University, USA  M.S. from Iowa State University, USA  B.E. from 新竹清華大學  Technical specialty: Databases and Intelligent Decision Support Systems.  Research interests: Data Mining, Biomedical informatics, Artificial Intelligence, Artificial Neural Networks

4 Contact Info  Office Hour: Friday 3:00 – 5:00 pm  Contact Info: TEL: (03) ext

5 Course Objectives To learn  the terms, concepts and applications of data mining  the processes, techniques and models of data mining  data preprocessing techniques  data Warehouse and OLAP technology  to use free data mining software: Weka to analyze a certain data set

6 Course Content  Introduction to data mining  Main data mining techniques Association rule mining Classification and prediction Cluster analysis  Data preprocessing techniques  Data warehouse and OLAP Technology

7 Textbook and References  Textbook Jiawei Han and Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann Publishers, San Francisco, CA, USA,  參考書 Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall, Upper Saddle River, NJ, USA, 2002.

8 Grading Policy  10% : Class Participation  40% : Midterm Exam  50% : Final Project 10% : Proposal (problem analysis) 10% : Final Report 30% : Data Analysis and Presentation

9 Project Proposal (week 14, 5/31) The proposal is to plan your project. It should at least include :  Title  Team member  Motivation  Problem, data description, and importance of data including data source, description, description of important attributes, data year, record number, attribute number and other  Schedule and who does what if your team has two members  Used data mining techniques  A short description of the DM techniques  The process flow of data analysis  Expected value of the discovered knowledge  Others

10 Final Project  A project on DM application  A presentation and report to introduce your project, at least including Motivation Problem, data description, and importance of data How the problem can be solved The DM algorithms you use/implement and related literature The process flow of data analysis data preprocessing, data mining, knowledge presentation/evaluation Result and value of the discovered knowledge Discussion

11 Class Schedule  Week 1:Introduction of class and data mining  Week 2-4: Association rule mining  Week 5-7: Classification and prediction  (Week 6 : 民族掃墓節 放假一日 )  Week 8-10:Cluster analysis  Week 11: Midterm  Week 12-14: Data preprocessing, DW/OLTP (Week 14 : project proposal due)  Week 15: Data warehouse and OLTP  Week 16-18: Final project presentation

12 Internet Resources  Lecture Slides Browser URL: ftp:// / cchen → 102Spring → 102S_Data Mining 上課計畫、上課投影片、期末專題、 Weka 、老師學期週行程  Open source DM software in Java: WEKA

13 Dataset Web Sites for Mining  UCI Machine Learning Repository  Google Trends 、 Google Insights for Search Google Trends Google Insights for Search  DASL  JSE Data Archive  KDNuggets  MLnet Online Information Service

14 Question & Answer