ICA and PCA 學生:周節 教授:王聖智 教授. Outline Introduction PCA ICA Reference.

Slides:



Advertisements
Similar presentations
Independent Component Analysis: The Fast ICA algorithm
Advertisements

1 Econometrics. 2 Ch1 The nature and scope of Econometrics Y: dependent var. => effect ( 果 ) X 1, …X k : independent var. => cause ( 因 ) Ch2-Ch5:Review.
Face Recognition Ying Wu Electrical and Computer Engineering Northwestern University, Evanston, IL
Independent Component Analysis & Blind Source Separation
Chapter 2 Random Vectors 與他們之間的性質 (Random vectors and their properties)
Subspace and Kernel Methods April 2004 Seong-Wook Joo.
1 Advanced Chemical Engineering Thermodynamics Chapter 1 The phase equilibrium problem.
Independent Component Analysis (ICA)
Synthesizing Physically Realistic Human Motion in Low-Dimensional, Behavior- Specific Spaces SIGGRAPH ’ 04 Speaker: Alvin Date: 13 July 2004.
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
Chapter 9 Hypothesis tests with the t statistic. 當母體  為未知時 ( 我們通常不知 ) ,用樣本 s 來取代 因為用 s 來估計  ,所呈現出來的分佈已不 是 z distribution ,而是 t distribution.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 Chemical and Engineering Thermodynamics Chapter 8 Phase equilibrium in mixtures Parts B : Illustration Sandler.
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
Department of Air-conditioning and Refrigeration Engineering/ National Taipei University of Technology 強健控制設計使用 MATLAB 李達生.
Dimensional reduction, PCA
Independent Component Analysis & Blind Source Separation Ata Kaban The University of Birmingham.
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
生物統計學 期中報告 組員 : 醫放一 A 王小明 醫放一 A 王小明 醫放一 A 王大明 醫放一 A 王大明 2009/04/14.
Independent Component Analysis (ICA) and Factor Analysis (FA)
National United University Department of Electrical Engineering ( Meiling CHEN ) Lecture 00 應用線性代數 (3 學分 ) Linear algebra and its applications.
An Introduction to Independent Component Analysis (ICA) 吳育德 陽明大學放射醫學科學研究所 台北榮總整合性腦功能實驗室.
第五章 內積空間 5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程
Bayesian belief networks 2. PCA and ICA
1 Short Vectors of Planar Lattices Via Continued Fraction Friedrich Eisenbrand Information Processing Letters, 田錦燕 95/05/5.
ICA Alphan Altinok. Outline  PCA  ICA  Foundation  Ambiguities  Algorithms  Examples  Papers.
Distribute Video Coding 林明德. Lossless Compression 不考慮 X 和 Y 的相關性,直接傳送 X 和 Y 各需要使用 3bits ,總共傳出 的 bit 數為 6bits 。 (1) 考慮 X 和 Y 的相關性 (2) 將 Y 直接傳出,使用 3bits.
Chapter 5 Inner Product Spaces
第12章 團體溝通情境中的領導者.
Principal Component Analysis. Consider a collection of points.
Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models C. J. Leggetter and P. C. Woodland Department of.
Survey on ICA Technical Report, Aapo Hyvärinen, 1999.
Principle Component Analysis (PCA) Networks (§ 5.8) PCA: a statistical procedure –Reduce dimensionality of input vectors Too many features, some of them.
Facial Feature Extraction by Kernel Independent Component Analysis
Independent Components Analysis with the JADE algorithm
ERP DATA ACQUISITION & PREPROCESSING EEG Acquisition: 256 scalp sites; vertex recording reference (Geodesic Sensor Net)..01 Hz to 100 Hz analogue filter;
Independent Component Analysis on Images Instructor: Dr. Longin Jan Latecki Presented by: Bo Han.
Heart Sound Background Noise Removal Haim Appleboim Biomedical Seminar February 2007.
Independent Component Analysis
Hongyan Li, Huakui Wang, Baojin Xiao College of Information Engineering of Taiyuan University of Technology 8th International Conference on Signal Processing.
Independent Component Analysis Zhen Wei, Li Jin, Yuxue Jin Department of Statistics Stanford University An Introduction.
Equivalent Linearization for Nonlinear Random Vibration Elishakoff, I. And Cai, G.Q., “Approximate solution for nonlinear random vibration problems by.
N– variate Gaussian. Some important characteristics: 1)The pdf of n jointly Gaussian R.V.’s is completely described by means, variances and covariances.
ECE 8443 – Pattern Recognition LECTURE 10: HETEROSCEDASTIC LINEAR DISCRIMINANT ANALYSIS AND INDEPENDENT COMPONENT ANALYSIS Objectives: Generalization of.
A note about gradient descent: Consider the function f(x)=(x-x 0 ) 2 Its derivative is: By gradient descent (If f(x) is more complex we usually cannot.
1 Proposal of Service System for Ubiquitous Learning System on Adaptive Instructional System 2009 International Conference on Computational Science and.
Discrete Mathematics Section 3.7 Applications of Number Theory 大葉大學 資訊工程系 黃鈴玲.
Lecture 3 BME452 Biomedical Signal Processing 2013 (copyright Ali Işın, 2013) 1 BME452 Biomedical Signal Processing Lecture 3  Signal conditioning.
PCA vs ICA vs LDA. How to represent images? Why representation methods are needed?? –Curse of dimensionality – width x height x channels –Noise reduction.
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition LECTURE 12: Advanced Discriminant Analysis Objectives:
Principal Component Analysis (PCA)
Introduction to Independent Component Analysis Math 285 project Fall 2015 Jingmei Lu Xixi Lu 12/10/2015.
An Introduction of Independent Component Analysis (ICA) Xiaoling Wang Jan. 28, 2003.
Edge Detection-E Edge Detection 指導教授:張顧耀學生姓名:李益璋 學號: E
電腦視覺期末報告 Gradients 指導教授:張顧耀學生姓名:廖寶呈 學號: E
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition LECTURE 10: PRINCIPAL COMPONENTS ANALYSIS Objectives:
HST.582J/6.555J/16.456J Gari D. Clifford Associate Director, Centre for Doctoral Training, IBME, University of Oxford
Part 3: Estimation of Parameters. Estimation of Parameters Most of the time, we have random samples but not the densities given. If the parametric form.
Authors: Hung-Yu, Chi-Sung Laih
LECTURE 11: Advanced Discriminant Analysis
LECTURE 09: BAYESIAN ESTIMATION (Cont.)
Brain Electrophysiological Signal Processing: Preprocessing
Principal Component Analysis (PCA)
PCA vs ICA vs LDA.
Bayesian belief networks 2. PCA and ICA
Techniques for studying correlation and covariance structure
Introduction PCA (Principal Component Analysis) Characteristics:
A Fast Fixed-Point Algorithm for Independent Component Analysis
Outline Variance Matrix of Stochastic Variables and Orthogonal Transforms Principle Component Analysis Generalized Eigenvalue Decomposition.
Presentation transcript:

ICA and PCA 學生:周節 教授:王聖智 教授

Outline Introduction PCA ICA Reference

Introduction Why are these methods ? A: For computational and conceptual simplicity. And it is more convenient to analysis. What are these methods ? A: The “representation” is often sought as a linear transformation of the original data. Well-known linear transformation methods. Ex: PCA, ICA, factor analysis, projection pursuit………….

What is PCA? Principal Component Analysis It is a way of identifying patterns in data, and expressing the data in such a way as to highlight their similarities and differences. Reducing the number of dimensions

example X Y Original data

example X Y (1)Get some data and subtract the mean

example eigenvectors = eigenvalues = (2)Get the covariance matrix Covariance= (3)Get their eigenvectors & eigenvalues

example eigenvectors

Example (4)Choosing components and forming a feature vector eigenvectors eigenvalues A B B is bigger!

Example Then we choose two feature vector sets: (a) A+B ( feature vector_1) (b) Only B (Principal Component ) ( feature vector_2 ) Modified_data = feature_vector * old_data

example X Y (a)feature vector_1

example

x (b)feature vector_2

Example (5)Deriving the new data set from feature vector (a)feature vector_1 (b)feature vector_2 New_data = feature_vector_transpose * Modified_data

example X Y (a)feature vector_1

example X Y (b)feature vector_2

example

Sum Up 可以降低資料維度 資料要有相關性比較適合使用 幾何意義:投影到主向量上

What is ICA? Independent Component Analysis For separating the blind or unknown sources Start with “A cocktail-party problem”

ICA The Principle of ICA: A cocktail-party problem x 1 (t)=a 11 s 1 (t) +a 12 s 2 (t) +a 13 s 3 (t) x 2 (t)=a 21 s 1 (t) +a 22 s 2 (t) +a 12 s 3 (t) x 3 (t)=a 31 s 1 (t) +a 32 s 2 (t) +a 33 s 3 (t)

ICA X1 X2 X3 Linear Transformation S1 S2 S3

Math model Given x1(t),x2(t),x3(t) Want to find s1(t), s2(t), s3(t) x 1 (t)=a 11 s 1 (t) +a 12 s 2 (t) +a 13 s 3 (t) x 2 (t)=a 21 s 1 (t) +a 22 s 2 (t) +a 12 s 3 (t) x 3 (t)=a 31 s 1 (t) +a 32 s 2 (t) +a 33 s 3 (t) X=AS

Math model Because A,S are Unknown We need some assumption (1) S is statistical independent (2) S is nongaussian distributions Goal : Find a W such that S=WX X=AS

Theorem Using Central limit theorem The distribution of a sum of independent random variables tends toward a Gaussian distribution Observed signal=S1S2 Sn a1a1 + a 2 ….+ a n toward GaussianNon-Gaussian

Theorem Given x = As Let y = w T x z = A T w => y = w T As = z T s =S1S2 Sn z1z1 + z 2 ….+ z n toward GaussianNon-Gaussian Observed signal=X1X2 Xn w1w1 + w 2 ….+ w n

Theorem Find a w such that Maximization of NonGaussianity of y = w T x But how to measure NonGaussianity ? Y=X1X2 Xn w1w1 + w 2 ….+ w n

Theorem Measures of nongaussianity Kurtosis: As y toward to gaussian, F(y) is much closer to zero !!! F(y) = E{ (y) 4 } - 3*[ E{ (y) 2 } ] 2 Super-Gaussian kurtosis > 0 Gaussian kurtosis = 0 Sub-Gaussian kurtosis < 0

Steps (1) centering & whitening process (2) FastICA algorithm

Steps X1 X2 X3 Linear Transformation S1 S2 S3 FastICA S1 S2 S3 X1 X2 X3 centering & whitening Z1 Z2 Z3 Correlateduncorrelatedindependent

example Original data

example (1) centering & whitening process

example (2) FastICA algorithm

example (2) FastICA algorithm

Sum up 能讓成份間的統計相關性 (statistical dependent) 達到最小的線性轉換方法 可以解決未知訊號分解的問題 ( Blind Source Separation )

Reference “A tutorial on Principal Components Analysis”, Lindsay I Smith, February 26, 2002 “Independent Component Analysis : Algorithms and Applications “, Aapo Hyvärinen and Erkki Oja, Neural Networks Research Centre Helsinki University of Technology

centering & Whitening process Let is zero mean Then is a whitening matrix xEDVxz T 2 1   sxA  T EDV 2 1   TTT EEVxxVzz}{}{    EDEDEED TT I  TT E xx  }{ Let D and E be the eigenvalues and eigenvector matrix of covariance matrix of x, i.e.

For the whitened data z, find a vector w such that the linear combination y=w T z has maximum nongaussianity under the constrain Maximize | kurt(w T z)| under the simpler constraint that ||w||=1 Then centering & Whitening process

FastICA 1. Centering 2. Whitening 3. Choose m, No. of ICs to estimate. Set counter p  1 4. Choose an initial guess of unit norm for w p, eg. randomly. 5. Let 6. Do deflation decorrelation 7.Let w p  w p /||w p || 8.If w p has not converged (| | 1 ), go to step 5. 9.Set p  p+1. If p  m, go back to step 4.