FastOpt CAMELS A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr 1, Marko Scholze 2, Peter Rayner 3,Thomas Kaminski 4, Ralf.

Slides:



Advertisements
Similar presentations
Dynamical Prediction of the Terrestrial Ecosystem and the Global Carbon Cycle: a 25-year Hindcast Experiment Jin-Ho Yoon Dept. Atmospheric and Oceanic.
Advertisements

The Inverse Regional Ocean Modeling System:
Setup of 4D VAR inverse modelling system for atmospheric CH 4 using the TM5 adjoint model Peter Bergamaschi Climate Change Unit Institute for Environment.
Summary discussion Top-down approach Consider Carbon Monitoring Systems, tailored to address stakeholder needs. CMS frameworks can be designed to provide.
Improving Understanding of Global and Regional Carbon Dioxide Flux Variability through Assimilation of in Situ and Remote Sensing Data in a Geostatistical.
Near-Real Time Analysis of the Modern Carbon Cycle by Model-Data Fusion Scott Denning, David Baker, Chris O’Dell, Denis O’Brien, Tomohiro Oda, Nick Parazoo,
Estimating biophysical parameters from CO 2 flask and flux observations Kevin Schaefer 1, P. Tans 1, A. S. Denning 2, J. Collatz 3, L. Prihodko 2, I. Baker.
Estimating parameters in inversions for regional carbon fluxes Nir Y Krakauer 1*, Tapio Schneider 1, James T Randerson 2 1. California Institute of Technology.
Estimation of daily CO 2 fluxes over Europe by inversion of atmospheric continuous data C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire.
Data Assimilation in the NCEO (National Centre for Earth Observation) Peter Jan van Leeuwen Data-Assimilation Research Centre DARC University of Reading.
Simulations of carbon transport in CCM3: uncertainties in C sinks due to interannual variability and model resolution James Orr (LSCE/CEA-CNRS and IPSL,
Prabir K. Patra Acknowledgments: S. Maksyutov, K. Gurney and TransCom-3 modellers TransCom Meeting, Paris; June 2005 Sensitivity CO2 sources and.
Interannual variability in CO2 fluxes derived from 64-region inversion of atmospheric CO2 data Prabir K. Patra*, Shamil Maksyutov*, Misa Ishizawa*, Takakiyo.
Prabir K. Patra, Shamil Maksyutov, A. Ito and TransCom-3 modellers Jena; 13 May 2003 An evaluation of an ecosystem model for studying CO2 seasonal cycle.
Evaluating the Impact of the Atmospheric “ Chemical Pump ” on CO 2 Inverse Analyses P. Suntharalingam GEOS-CHEM Meeting, April 4-6, 2005 Acknowledgements.
Carbon Flux Bias Estimation at Regional Scale using Coupled MLEF-PCTM model Ravindra Lokupitiya Department of Atmospheric Science Colorado State University.
NOCES meeting Plymouth, 2005 June Top-down v.s. bottom-up estimates of air-sea CO 2 fluxes : No winner so far … P. Bousquet, A. Idelkadi, C. Carouge,
A global Carbon Cycle Data Assimilation System (CCDAS) to infer atmosphere- biosphere CO 2 exchanges and their uncertainties Marko Scholze 1, Peter Rayner.
Improving and extending CMS land surface carbon flux products including estimates of uncertainties in fluxes and biomass. Jim Collatz, Randy Kawa, Lesley.
Assimilating observed seasonal cycles of CO2 to CASA model parameters
Application of Geostatistical Inverse Modeling for Data-driven Atmospheric Trace Gas Flux Estimation Anna M. Michalak UCAR VSP Visiting Scientist NOAA.
Maximum Liklihood Ensemble Filter (MLEF) Dusanka Zupanski, Kevin Robert Gurney, Scott Denning, Milia Zupanski, Ravi Lokupitiya June, 2005 TransCom Meeting,
GEOS-CARB: A Framework for Monitoring Carbon Concentrations and Fluxes Steven Pawson 1, Lesley Ott 1, David Baker 2, George J. Collatz 1, Janusz Eluszkiewicz.
Global Carbon Cycle Feedbacks: From pattern to process Dave Schimel NEON inc.
Climate and the Carbon Cycle Gretchen Keppel-Aleks California Institute of Technology 16 October 2010.
A global Carbon Cycle Data Assimilation System (CCDAS) and its link to CAMELS Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 3, Thomas Kaminski 4, Ralf.
Fires and the Contemporary Global Carbon Cycle Guido van der Werf (Free University, Amsterdam, Netherlands) In collaboration with: Jim Randerson (UCI,
Optimising ORCHIDEE simulations at tropical sites Hans Verbeeck LSM/FLUXNET meeting June 2008, Edinburgh LSCE, Laboratoire des Sciences du Climat et de.
Page 1© Crown copyright WP4 Development of a System for Carbon Cycle Data Assimilation Richard Betts.
Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas.
Carbon, soil moisture and fAPAR assimilation Wolfgang Knorr Max-Planck Institute of Biogeochemistry Jena, Germany 1 Acknowledgments: Nadine Gobron 2, Marko.
Overview of Techniques for Deriving Emission Inventories from Satellite Observations Frascati, November 2009 Bas Mijling Ronald van der A.
Regional Inversion of continuous atmospheric CO 2 measurements A first attempt ! P., P., P., P., and P. Philippe Peylin, Peter Rayner, Philippe Bousquet,
A Global Carbon Cycle Data Assimilation System (CCDAS) to Infer Atmosphere- Biosphere CO2 Exchanges and Their Uncertainties Marko Scholze1, Peter Rayner2,
ENSO Variability in SODA: SULAGNA RAY BENJAMIN GIESE TEXAS A&M UNIVERSITY WCRP 2010, Paris, Nov
Exploiting observed CO:CO 2 correlations in Asian outflow to invert simultaneously for emissions of CO and CO 2 Observed correlations between trace gases.
1 CAMELS Carbon Assimilation and Modelling of the European Land Surface an EU Framework V Project (Part of the CarboEurope Cluster) CAMELS.
State-of-the-Art of the Simulation of Net Primary Production of Tropical Forest Ecosystems Marcos Heil Costa, Edson Luis Nunes, Monica C. A. Senna, Hewlley.
Integration of biosphere and atmosphere observations Yingping Wang 1, Gabriel Abramowitz 1, Rachel Law 1, Bernard Pak 1, Cathy Trudinger 1, Ian Enting.
Volcanic Climate Impacts and ENSO Interaction Georgiy Stenchikov Department of Environmental Sciences, Rutgers University, New Brunswick, NJ Thomas Delworth.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
Research Vignette: The TransCom3 Time-Dependent Global CO 2 Flux Inversion … and More David F. Baker NCAR 12 July 2007 David F. Baker NCAR 12 July 2007.
P. K. Patra*, R. M. Law, W. Peters, C. Rodenbeck et al. *Frontier Research Center for Global Change/JAMSTEC Yokohama, Japan.
Development of an EnKF to estimate CO 2 fluxes from realistic distributions of X CO2 Liang Feng, Paul Palmer
Toward a mesoscale flux inversion in the 2005 CarboEurope Regional Experiment T.Lauvaux, C. Sarrat, F. Chevallier, P. Ciais, M. Uliasz, A. S. Denning,
# # # # An Application of Maximum Likelihood Ensemble Filter (MLEF) to Carbon Problems Ravindra Lokupitiya 1, Scott Denning 1, Dusanka Zupanski 2, Kevin.
Non-Linear Parameter Optimisation of a Terrestrial Biosphere Model Using Atmospheric CO 2 Observation - CCDAS Marko Scholze 1, Peter Rayner 2, Wolfgang.
Inferring terrestrial CO 2 fluxes from a global-scale Carbon Cycle Data Assimilation System (CCDAS) Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1,
Quantitative network design for biosphere model process parameters E. Koffi 1, P. Rayner 1, T. Kaminski 2, M. Scholze 3, M. Voßbeck 2, and R. Giering 2.
CAMELS CCDAS A Bayesian approach and Metropolis Monte Carlo method to estimate parameters and uncertainties in ecosystem models from eddy-covariance data.
FastOpt Quantitative Design of Observational Networks M. Scholze, R. Giering, T. Kaminski, E. Koffi P. Rayner, and M. Voßbeck Future GHG observation WS,
1 CAMELS CAMELS PROJECT OVERVIEW Motivation for CAMELS Deliverables Products Structure Peter Cox, Hadley Centre, Met Office.
Goal: to understand carbon dynamics in montane forest regions by developing new methods for estimating carbon exchange at local to regional scales. Activities:
Climate–Carbon Modelling, Assimilation & Prediction Wolfgang Knorr, QUEST NCEO/Carbon Fusion Sheffield, 29 February 2008.
Data assimilation in Marko Scholze. Strictly speaking, there are so far no DA activities in QUEST, but CCDAS (as part of core team activities) CPDAS and.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
Error correlation between CO 2 and CO as a constraint for CO 2 flux inversion using satellite data from different instrument configurations Helen Wang.
Inverse Modeling of Surface Carbon Fluxes Please read Peters et al (2007) and Explore the CarbonTracker website.
Geogg124: Data assimilation P. Lewis. What is Data Assimilation? Optimal merging of models and data Models Expression of current understanding about process.
Earth Observation Data and Carbon Cycle Modelling Marko Scholze QUEST, Department of Earth Sciences University of Bristol GAIM/AIMES Task Force Meeting,
FastOpt A prototype Carbon Cycle Data Assimilation System (CCDAS) Inferring interannual variations of vegetation- atmosphere CO 2 fluxes Marko Scholze.
Comparison of adjoint and analytical approaches for solving atmospheric chemistry inverse problems Monika Kopacz 1, Daniel J. Jacob 1, Daven Henze 2, Colette.
Carbon Cycle Data Assimilation with a Variational Approach (“4-D Var”) David Baker CGD/TSS with Scott Doney, Dave Schimel, Britt Stephens, and Roger Dargaville.
The Carbon Cycle Data Assimilation System (CCDAS)
CO2 sources and sinks in China as seen from the global atmosphere
Effects of drought and fire on interannual variability in CO2 as derived using atmospheric-CO2 inversion Prabir K. Patra Acknowledgements to: M. Ishizawa,
CarboEurope Open Science Conference
Hartmut Bösch and Sarah Dance
Volcanic Climate Impacts and ENSO Interaction
Presentation transcript:

FastOpt CAMELS A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr 1, Marko Scholze 2, Peter Rayner 3,Thomas Kaminski 4, Ralf Giering

FastOpt CAMELS Overview Top-down vs. bottom-up Gradient method and optimisation Results: Optimal fluxes Uncertainties in parameters + results Uncertainties in fluxes + results Possible assimilation of flux data Conclusions and Outlook

FastOpt CAMELS Top-down / Bottom-up atm. CO 2 data inverse atmospheric transport modelling net CO2 fluxes at the surface process model climate and other driving data

FastOpt CAMELS Carbon Cycle Data Assimilation Biosphere Model: BETHY Atmospheric Transport Model: TM2 Misfit to Observations Parameters: 58 Fluxes: 800,000 Station Conc. 6,500 Misfit 1 Forward modelling: Parameters –> Misfit Adjoint or Tangent linear model:  Misfit / ∂ Parameters parameter optimization

FastOpt CAMELS Figure taken from Tarantola '87 Space of m (model parameters) First derivative (Gradient) of J(m) w.r.t. m (model parameters) : –∂J(m)/∂m yields direction of steepest descent Gradient Method Cost Function J(m)

FastOpt CAMELS Carbon Cycle Data Assimilation System (CCDAS) CCDAS Step 2 BETHY+TM2 only Photosynthesis, Energy&Carbon Balance CO 2 + Uncert. Optimized Params + Uncert. Diagnostics + Uncert. veg. index satellite + Uncert. CCDAS Step 1 full BETHY Phenology Hydrology Assimilated Prescribed Assimilated Background CO 2 fluxes* * * ocean: Takahashi et al. (1999), LeQuere et al. (2000); emissions: Marland et al. (2001), Andres et al. (1996); land use: Houghton et al. (1990)

FastOpt CAMELS BETHY (Biosphere Energy-Transfer-Hydrology Scheme) GPP: C3 photosynthesis – Farquhar et al. (1980) C4 photosynthesis – Collatz et al. (1992) stomata – Knorr (1997) R aut : maintenance respiration = f(N leaf, T) – Farquhar, Ryan (1991) growth respiration ~ NPP – Ryan (1991) R het : fast/slow pool resp. = w   Q 10 T/10 C fast/slow /  fast/slow  slow –> infin. average NPP =  average R het (at each grid point)  <1: source  >1: sink  t=1h  t=1day  lat,  lon = 2 deg

FastOpt CAMELS Optimisation

FastOpt CAMELS Optimised fluxes (1) global fluxes Major El Niño events Major La Niña event Post Pinatubo Period

FastOpt CAMELS Optimised fluxes (2) normalized CO 2 flux and ENSO ENSO and terr. biosph. CO 2 : correlation seems strong lag correlation (low-pass filtered) correlation between Niño-3 SST anomaly and net CO 2 flux shows maximum at 4 months lag, for both El Niño and La Niña states

FastOpt CAMELS net CO 2 flux to atm. gC / (m 2 month) during El Niño (>+1  ) Optimised fluxes (3) lagged correlation at 99% significance flux sites?

FastOpt CAMELS Figure taken from Tarantola '87 J(x) Second Derivative (Hessian) of J(m): ∂ 2 J(m)/∂m 2 yields curvature of J, provides estimated uncertainty in m opt Error Covariances in Parameters Space of m (model parameters)

FastOpt CAMELS Error Covariances in Parameters examples: Cost function (misift): model diagnostics error covariance matrix of measurements measurements assumed model parameters a priori covariance matrix of parameter + model error a priori parameter values Error covariance of parameters after optimisation: = inverse Hessian

FastOpt CAMELS Relative Error Reduction

FastOpt CAMELS Error Covariances in Diagnostics Error covariance of diagnostics, y, after optimisation (e.g. CO 2 fluxes): error covariance of parameters adjoint or tangent linear model

FastOpt CAMELS Regional Net Carbon Balance and Uncertainties

FastOpt CAMELS Comparison shows impact of a (pseudo) flux measurement in the broadleaf evergreen biome on Q10 estimated by an inversion of SDBM: Upper panel: only concentration data Lower panel: concentration data + pseudo flux measurement (mean: as predicted sigma: 10gC/m^2/year) Details: Kaminski et al., GBC, 2001 a posteriori mean/uncertainties a priori mean/uncertainties

FastOpt CAMELS CCDAS with 58 parameters can already fit 20 years of CO 2 concentration data Sizeable reduction of uncertainty for ~13 parameters terr. biosphere response to climate fluctuations dominated by ENSO System can test model with uncertain parameters, and deliver a posteriori uncertainties on parameters, fluxes Conclusions

FastOpt CAMELS explore more parameter configurations include fire as a process with uncertainties need more constraints, e.g. eddy fluxes –> reduce uncertainties however: needs to solve scaling problem (satellites?) approach can be regionalized easily extend approach to ocean carbon cycle projection of uncertainties into future Outlook