Structure Elucidation Method

Slides:



Advertisements
Similar presentations
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Advertisements

1 The world leader in serving science A Practical Introduction to Nuclear Magnetic Resonance Spectroscopy Basic Theory.
Advanced Higher Unit 3 Nuclear Magnetic Resonance Spectroscopy.
Kcal/mol 5.7 X X X X X EIMSNMR.
1 CHAPTER 13 Molecular Structure by Nuclear Magnetic Resonance (NMR)
Integration 10-6 Integration reveals the number of hydrogens responsible for an NMR peak. The area under an NMR peak is proportional to the number of equivalent.
Case Western Reserve University
11.1 Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance (NMR) Spectroscopy
Chapter 13 Nuclear Magnetic Resonance Spectroscopy
Interpreting NMR Spectra CHEM 318. Introduction You should read the assigned pages in your text (either Pavia or Solomons) for a detailed description.
Understanding 13 C NMR spectroscopy. Nuclear magnetic resonance is concerned with the magnetic properties of certain nuclei. In this course we are concerned.
1 Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai’i Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
1 Nuclear Magnetic Resonance Spectroscopy Renee Y. Becker Valencia Community College CHM 2011C.
Nuclear Magnetic Resonance Spectroscopy II Structure Determination:
Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR)
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
1 Organic Chemistry, Third Edition Janice Gorzynski Smith University of Hawai’i Chapter 14 Lecture Outline Prepared by Layne A. Morsch The University of.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 7 th edition.
Nuclear Magnetic Resonance (NMR) Spectroscopy Structure Determination
Nuclear Magnetic Resonance Spectroscopy. The Use of NMR Spectroscopy Used to map carbon-hydrogen framework of molecules Most helpful spectroscopic technique.
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Nuclear Magnetic Resonance
NMR-Part Chemical Shifts in NMR The nuclei not only interact with the magnetic field but also with the surronding nuclei and their electrons. The.
Nuclear Magnetic Resonance Spectroscopy Dr. Sheppard Chemistry 2412L.
NMR Spectroscopy Abu Yousuf, PhD Associate Professor Department of Chemical Engineering & Polymer Science Shahjalal University of Science & Technology.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
Nuclear Magnetic Resonance Spectroscopy. 2 Introduction NMR is the most powerful tool available for organic structure determination. It is used to study.
Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice.
Week 11 © Pearson Education Ltd 2009 This document may have been altered from the original State that NMR spectroscopy involves interaction of materials.
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Spectroscopy (NMR) Dr AKM Shafiqul Islam School of Bioprocess Engineering.
University of Kurdistan Food Quality Evaluation Methods (FQEM) Lecturer: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture,
Nuclear Magnetic Resonance Spectroscopy
Chapter 14 NMR Spectroscopy Organic Chemistry 6th Edition Dr. Halligan
CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER THIRTEEN Terrence P. Sherlock Burlington.
All atoms, except those that have an even atomic number and an even mass number, have a property called spin.
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Basics of …….. NMR phenomenonNMR phenomenon Chemical shiftChemical shift Spin-spin splittingSpin-spin splitting.
Nuclear Magnetic Resonance Information Gained: Different chemical environments of nuclei being analyzed ( 1 H nuclei): chemical shift The number of nuclei.
Chapter 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
Important Concepts 10 1.NMR – Most important spectroscopic tool for elucidating organic structures. 2.Spectroscopy – Based on lower energy forms of molecules.
NMR Spectroscopy.
Nuclear Magnetic Resonance Spectroscopy. Principles of Molecular Spectroscopy: Electromagnetic Radiation.
Electromagnetic Spectrum. PROTON NUCLEAR MAGNETIC RESONANCE ( 1 H NMR)
13.3 Introduction to 1 H NMR Spectroscopy. 1 H and 13 C both have spin = ±1/2 1 H is 99% at natural abundance 13 C is 1.1% at natural abundance The nuclei.
Chapter 19 Part III Nuclear Magnetic Resonance Dr. Nizam M. El-Ashgar Chemistry Department Islamic University of Gaza 3/5/20161Chapter 19.
MOLECULAR STRUCTURE ANALYSIS NMR Spectroscopy VCE Chemistry Unit 3: Chemical Pathways Area of Study 2 – Organic Chemistry.
12.1 Nuclear Magnetic Resonance Spectroscopy
11.1 Nuclear Magnetic Resonance Spectroscopy
The Use of NMR Spectroscopy
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
The Use of NMR Spectroscopy
Figure: 13.1 Title: Figure Nuclei in the absence and presence of an applied magnetic field. Caption: In the absence of an applied magnetic field,
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
A Summarized Look into…
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance (NMR) Spectroscopy
Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. It is used to study.
Nuclear Magnetic Resonance (NMR)
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance (NMR)
The Use of NMR Spectroscopy
Presentation transcript:

Structure Elucidation Method Janine A. Ferrer IV- BS Chemistry for Teachers

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy A spectroscopic technique that provides information about the carbon-hydrogen framework of a molecule. Nuclei are positively charged These spinning nuclei generate tiny magnetic fields Tiny magnets interact with an external magnetic field, denoted B0 Proton (1H) and carbon (13C) are the most important nuclear spins to organic chemists

Nuclear Magnetic Resonance Spectroscopy Nuclear spins are oriented randomly in the absence (a) of an external magnetic field but have a specific orientation in the presence (b) of an external field, B0 Some nuclear spins are aligned parallel to the external field Some nuclear spins are aligned antiparallel to the external field

Nuclear Magnetic Resonance Spectroscopy When nuclei that are aligned parallel with an external magnetic field are irradiated with the proper frequency of electromagnetic radiation the energy is absorbed and the nuclei “spin-flips” to the higher-energy antiparallel alignment Nuclei that undergo “spin-flips” in response to applied radiation are said to be in resonance with the applied radiation - nuclear magnetic resonance

Nuclear Magnetic Resonance Spectroscopy Many nuclei exhibit NMR phenomenon All nuclei with odd number of protons of neutrons Nuclei with even numbers of both protons and neutrons do not exhibit NMR phenomenon

The Nature of NMR Absorptions (a) 1H NMR spectrum and (b) 13C NMR spectrum of methyl acetate. Peak labeled “TMS” at far right is for calibration

The Nature of NMR Absorptions Because the three hydrogens in each methyl group of methyl acetate have the same electronic environment they are shielded to the same extent and are said to be equivalent Chemically equivalent nuclei always show the same absorption The three hydrogens in each methyl group have the same 1H NMR signal

The Nature of NMR Absorptions Schematic operation of a basic NMR spectrometer

300 MHz NMR 900 MHz NMR p. 547

Chemical Shifts The NMR Chart The downfield, deshielded side is on the left, and requires a lower field strength for resonance The upfield, shielded side is on the right, and requires a higher field strength for resonance The tetramethylsilane (TMS) absorption is used as a reference point

Chemical Shifts Chemical shift Position on NMR chart at which a nucleus absorbs The chemical shift of TMS is set as zero point Other absorptions normally occur downfield NMR charts calibrated using delta (d) scale 1 d = 1 part per million of operating frequency Chemical shift of an NMR absorption in d units is constant, regardless of the operating frequency of the spectrometer

Chemical Shifts Narrow NMR absorption range 0 to 10 d for 1H NMR 0 to 220 d for 13C NMR Higher magnetic field instruments have greater dispersion of NMR signals

1H Nuclear Magnetic Resonance

1H NMR Spectroscopy and Proton Equivalence 1H NMR spectroscopy determines how many kinds of electronically nonequivalent hydrogens are present in a molecule. Equivalence or nonequivalence of two protons determined by replacing each H by an X group Protons are chemically unrelated and thus nonequivalent Protons are chemically identical and thus electronically equivalent Homotopic Enantiotopic Diastereotopic

Chemical Shifts in 1H NMR Spectroscopy Most 1H NMR chemical shifts occur within the 0 to 10 d range except for carboxylic acid O-H absorptions which usually occur within the 11-12 d range

Chemical Shifts in 1H NMR Spectroscopy

Integration of 1H NMR Absorptions: Proton Counting The area under each 1H NMR peak is proportional to the number of protons causing that peak Integrating (electronically measuring) the area under each peak makes it possible to determine the relative number of each kind of proton in a molecule Integrating the peaks of 2,2-dimethylpropanoate in a “stair-step” manner shows that they have 1:3 ratio, corresponding to the ratio of the numbers of protons (3:9)

Spin-Spin Splitting in 1H NMR Spectra The absorption of a proton can split into multiple peaks called a multiplet 1H NMR spectrum of bromoethane shows four peaks (a quartet) at 3.42 d for –CH2Br protons and three peaks (a triplet) at 1.68 d for –CH3 protons

Spin-Spin Splitting in 1H NMR Spectra Multiple absorptions, called spin-spin splitting, are caused by the interaction (coupling) of the spins of nearby nuclei Tiny magnetic fields produced by one nucleus affects the magnetic field felt by neighboring nuclei If protons align with the applied field the effective field felt by neighboring protons is slightly larger If protons align against the applied field the effective field felt by neighboring protons is slightly smaller

Spin-Spin Splitting in 1H NMR Spectra Coupling constant The distance between peaks in a multiplet Denoted J Measured in hertz Generally fall into range 0 to 18 Hz Same coupling constant is shared by both groups of hydrogens whose spins are coupled Coupling constants are independent of spectrometer field strength

Spin-Spin Splitting in 1H NMR Spectra n + 1 rule Protons that have n equivalent neighboring protons show n + 1 peaks in their 1H NMR spectrum

Spin-Spin Splitting in 1H NMR Spectra Summary of spin-spin splitting in 1H NMR: Chemically equivalent protons do not show spin-spin splitting The signal of a proton with n equivalent neighboring protons is split into a multiplet of n + 1 peaks with coupling constant J

Spin-Spin Splitting in 1H NMR Spectra Two groups of protons coupled to each other have the same coupling constant, J

Magnetic Resonance Imaging (MRI) Lagniappe Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging (MRI) is a diagnostic technique of enormous value to the medical community. MRI takes advantage of the magnetic properties of certain nuclei, typically hydrogen, and of the signals emitted when those nuclei are stimulated by radiofrequency energy. Signals detected by MRI vary with the density of hydrogen atoms and with the nature of their surroundings, allowing identification of different types of tissue and even allowing the visualization of motion. MRI of this left knee shows the presence of a ganglion cyst.

Life is a maybe Death is for sure Sin is the cause Christ is the cure Happy Good Friday