The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Rotational Spectra of Hydrogen-OCS van der Waals Complexes Zhenhong Yu, Kelly Higgins, and William Klemperer Department of Chemistry and Chemical Biology.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
ROTATIONAL SPECTRA OF THE TRIFLUORO ETHANOL (TFE) -WATER CLUSTERS AND THE TFE DIMERS Javix Thomas and Yunjie Xu Department of Chemistry, University of.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
INFRARED-ACTIVE VIBRON BANDS ASSOCIATED WITH RARE GAS SUBSTITUTIONAL IMPURITIES IN SOLID HYDROGEN PAUL L. RASTON and DAVID T. ANDERSON, Department of Chemistry,
Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer Brian Howard, Edward Steer, Michael Tayler, Bin Ouyang (Oxford.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Joseph A. Fournier, Robert K. Bohn, John A. Montgomery, Jr. University of Connecticut, Storrs, CT Microwave Spectroscopy and Structures of Perfluorohexane.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Deuterated water hexamer observed by chirped-pulse rotational spectroscopy International Symposium on Molecular Spectroscopy, 69 th Meeting Champaign-Urbana,
The Rotational Spectra of Cyclohexene Oxide and Its Argon van der Waals Complex DANIEL J. FROHMAN, STEWART E. NOVICK AND WALLACE C. PRINGLE Wesleyan University.
ROTATIONAL SPECTROSCOPY OF CO SOLVATED WITH PARA-H 2 MOLECULES Paul Raston and Wolfgang Jäger Department of Chemistry, University of Alberta, Edmonton,
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
HIGH RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE BAND OF THE NO 3 RADICAL Terrance J. Codd, Mourad Roudjane and Terry A. Miller.
High Resolution Microwave Spectra of He N – and (H 2 ) N – Linear Molecule Clusters Wolfgang Jäger Department of Chemistry, University of Alberta, Edmonton,
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
FIRST HIGH RESOLUTION INFRARED SPECTROSCOPY OF GAS PHASE CYCLOPENTYL RADICAL: STRUCTURAL AND DYNAMICAL INSIGHTS FROM THE LONE CH STRETCH Melanie A. Roberts,
Infrared spectroscopy of two isomers of the OCS-CS 2 complex J. Norooz Oliaee, M. Dehghany, Mahin Afshari, N. Moazzen-Ahmadi Department of Physics and.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
The Rotational Spectrum and Hyperfine Constants of Arsenic Monophosphide, AsP Flora Leung, Stephen A. Cooke and Michael C. L. Gerry Department of Chemistry,
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Determination of the Structure of Neon Cyclopentanone Wei Lin, Andrea J. Minei, Andrew H. Brooks, Wallace C. Pringle, Stewart E. Novick Department of Chemistry.
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
 -  and CH-  interactions in the molecular nitrogen- and methane-pyridine complexes Department of Chemistry University of Alberta.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Rotational Spectra and Structure of PhenylacetyleneH2S complex
Spectroscopy of (He) N -Molecule Clusters: Tracing the Onset of Superfluidity Yunjie Xu and Wolfgang Jäger Department of Chemistry, University of Alberta,
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
1Kanagawa Institute of Technology 3Georgia Southern University
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
Rotational Spectra of H2S Dimer: Observation of Ka =1 Lines
Fourier transform microwave spectra of n-butanol and isobutanol
Methylindoles – Microwave Spectroscopy
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Experimental Measurement of the Induced Dipole Moment of an Isolated Molecule in Its Ground and Electronically Excited States. Indole and Indole-H2O.*
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger

Pyridine molecule  The C 5 H 5 N structure is similar to C 6 H 6.  Large aromatic surfaces = many Van der Waals binding sites.  A strong polarizer. N-C3 = Å Surface area  6.2 Å 2 Dipole moment = 2.2 debye

M. J. Heather, D. W. H. Swenson, and C. E. Dykstra. J. Phys. Chem. A, 110, (2006). Predicted (H 2 ) 20 -C 6 H 6 cluster H 2  7 above--6 along the edge--7 below! The axial H 2 are slippery (floppy).

The dimers Helium-pyridineHydrogen molecule-pyridine  MP2 calculations show the T-shaped configuration is most stable. B = 59.3 cm -1 I = 1 (oH 2 ) I = 0 (pH 2 ) (D e = 90 cm -1 )(D e = 327 cm -1 )

Rotation of H 2 over C 5 H 5 N surface “H-bond” breaking motion (-327 cm -1 )(-290 cm -1 ) 40 cm -1 up hill More repulsive

FTMW Experiment For details see: V. N. Markov, Y. Xu, and W. Jager, Rev. Sci. Instrum. 69, 1198, 4061 (1998). He-C 5 H 5 N: 0.05% pyridine at atm. helium H 2 -C 5 H 5 N: 0.05% pyridine % H 2 at 40.0 atm helium

Experimental Results He N -C 5 H 5 N He 1 -C 5 H 5 NHe 2 -C 5 H 5 N 12 R-branch transitions. 9 a-type and 3 c-type. 39 hyperfine components. 5 R-branch transitions. All a-type. 18 hyperfine components.

The 0 00  1 01 transition He 1 -C 5 H 5 N He 2 -C 5 H 5 N The narrow splitting = He atom tunnelling? 1 of 3 hyperfine components

ParameterHe 1 -C 5 H 5 N This experiment He 1 -C 5 H 5 N **Fit to experimental ABC He 1 -C 5 H 5 N MP2/augcc- pvdz He 1 -C 6 H 6 LIF Experiment  A(MHz) (48) B(MHz) (45) (640) C(MHz) (81) (190) R(Å) (37)  (°)  (fit) 3.9 kHz--- He 1 -C 5 H 5 N: He 1 -C 5 H 5 N: The rotational constants and some structural parameters.  S. M. Beck, M. G. Liverman, D. L. Monts, and R. E. Smalley, J. Chem. Phys., 70(1), (1979). ** Z. Kisiel, P. W. Fowler, and A. C. Legon, J. Chem. Phys. 95(4), , (1991).

ParameterHe 2 -C 5 H 5 N This experiment* He 2 -C 5 H 5 N Fit (TopToP) A(MHz) (50) B(MHz) (50) C(MHz) (67) R(Å)(X-He 2 )Rcom = 3.48 He 1 -He 2 = 1.30 He 2 -C 5 H 5 N: He 2 -C 5 H 5 N: The rotational constants and some structural parameters.

Parameter (MHz) He 1 -C 5 H 5 NHe 2 -C 5 H 5 NAr-C 5 H 5 N  DJDJ (55)0.2259(53) (5) D JK (43)-0.397(14)0.0196(1) DKDK (25) (15) d1d (27)-- d2d (10)-- HJHJ (35)-- H JK (473)-- HKHK (587)-- 1.5(  cc ) (64)5.104(40)- 0.25(  bb -  aa ) (19)1.5735(97)- The distortion constants for He 1 -C 5 H 5 N and He 2 - C 5 H 5 N.  T.D. Klots, T. Emilsson, R. S. Ruoff, and H. S. Gutowsky. J. Phys. Chem. 93, 1266 (1989)

Experimental Results (H 2 )-C 5 H 5 N o(H 2 )-C 5 H 5 Np(H 2 )-C 5 H 5 N (V 0 )(V 1 ) [ j H2 = 1 ] [ j H2 = 0 ] Ground stateExcited state

The 0 00  1 01 transition, (V 0 )  o(H 2 )-C 5 H 5 N: 11 a-type transitions, 52 hyperfine components fitted. o(H 2 )-C 5 H 5 Np(H 2 )-C 5 H 5 N 100 shots, S/N = shots, S/N =200  p(H 2 )-C 5 H 5 N: 4 a-type transitions fitted.

Hyperfine structures: o(H 2 )  C 5 H 5 N Fig. above illustrates the hyperfine splittings for 0 00  1 01 transition. The larger quadrupole splittings  MHz. The smaller spin-rotation splittings are  0.05 MHz. (MHz) F =1  F=1 F =1  F=2 F =1  F=  1 01

J = 1  J = 2,  K = 0 |K a | =    2 11 The observed 1 11  2 12 and 1 10  2 11 lines are displaced 1514 MHz from the band center due entirely to the asymmetry splitting. Highest transition is J=3  J=4.

The rotational and distortion constants for o(H 2 )-C 5 H 5 N and p(H 2 )-C 5 H 5 N. Parameter (MHz) o(H 2 )-C 5 H 5 N This experiment p(H 2 )-C 5 H 5 N This experiment* (H 2 )-C 5 H 5 N MP2/augcc-pvdz (T-shaped) A (11) (22) B (22) (8) C (33) (8) DJDJ (94) (9)- D JK (32)-- DKDK (24)-- d1d (53)-- d2d (13)-- C 5 H 5 N: A = (6), B = (6), C = (6) MHz.

The quadrupole and spin-rotation coupling constants, and the bond distance R for oH 2 -C 5 H 5 N. Parameter (MHz) o(H 2 )-C 5 H 5 N This experiment C5H5NC5H5N Free  H 2 eQq aa (7)-4.908(3)- eQq bb 1.451(7)1.434(3)- eQq cc 3.433(10)3.474(3)- M aa (45)-- M bb (22) (M  ) M cc (12)-- R(parallel)3.76(3) Å-- R(perpendicular)3.58(3) Å--  G. O. Sørensen. J. Molecular Spectroscopy, 22, 325(1967).  N. F. Ramsey. Phys. Rev. 85, 60 (1952).

Conclusion He 1 -C 5 H 5 N  T-shaped complex. (H) 2 -C 5 H 5 N  T-shaped complex. (He) 2 -C 5 H 5 N  nearly T-shaped. Helium atoms lie on the same ring side.

Acknowledgements Natural Sciences and Engineering Research Council of Canada and Alberta Ingenuity Fund for the financial supports. Qing Wen and Jen Landry for help with the FTMW spectrometer. Thank you for your attention!  More He/H 2 clusters MW talks by our group: TE02: Jen N. Landry TE03: Julie M. Michaud RI01: Wolfgang Jäger