Henk Eskes, ERS-ENVISAT symposium 2004 Retrieval, validation and assimilation of SCIAMACHY ozone columns Henk Eskes, Ronald van der A, Ellen Brinksma,

Slides:



Advertisements
Similar presentations
KNMI Ozone Satellite Observations
Advertisements

Rossana Dragani Using and evaluating PROMOTE services at ECMWF PROMOTE User Meeting Nice, 16 March 2009.
Martin G. Schultz, MPI Meteorology, Hamburg GEMS proposal preparation meeting, Reading, Dec 2003 GEMS RG Global reactive gases monitoring and forecast.
Henk Eskes GEMS overall validation workpackage Henk Eskes Royal Netherlands Meteorological Institute.
SSAG Data and Algorithm Subgroup, February 2004, Brussels Summary of data product and algorithm development at KNMI Ronald van der A, Juan Acarreta,
Henk Eskes, NO2 workshop KNMI, 10 Sep 2007 A combined retrieval, modelling and assimilation approach to estimate tropospheric NO2 from OMI measurements.
Henk Eskes, William Lahoz, ESTEC, 20 Jan 2004 The role of data assimilation in atmospheric composition monitoring and forecasting Henk Eskes, William Lahoz.
Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0)
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
SCIAMACHY data archive Bremen Level 2 - reading tools Institute of Environmental Physics and Institute of Remote Sensing University of Bremen K. Bramstedt.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
Institute for Climate and Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT 3D SLIMCAT Studies of Arctic Ozone Loss Wuhu Feng Acknowledgments: Martyn.
Surface UV radiation monitoring based on GOME and SCIAMACHY Jos van Geffen 1,2, Ronald van de A 1, Michiel van Weele 1, Marc Allaart 1, Henk Eskes 1 1)
Slide 1 Atmospheric Chemistry User Workshop, 20th & 21st January 2004, ESTEC EUMETSAT Satellite Application Facility on Ozone Monitoring
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Methane inversion from satellite, TRANSCOM workshop, Jena, May 2003 Inverse modelling of methane sources and sinks using satellite observations Jan.
KNMI, The Netherlands * SCIAMACHY validation workshop, Bremen, 6 Dec ‘04 Large scale validation of SCIAMACHY nadir reflectance Gijs van.
Assimilation of Aerosol Optical Depth Gé Verver 1, Bas Henzing 1, Peter van Velthoven 1 Cristina Robles-Gonzalez 2, Gerrit de Leeuw 2 1 KNMI, De Bilt,
Rossana Dragani ECMWF Atmosphere: Integration of several O3-CCI products in the ERA5 system (WP3.2)
Slide 1 TROPOMI workshop, KNMI, 5-6 March 2008 Slide 1 Assimilation of atmospheric composition at ECMWF Rossana Dragani ECMWF with acknowledgements to.
Eskes, Leiden workshop, 10 Nov Uncertainty characterisation in atmospheric chemistry data assimilation and emission estimation Henk Eskes KNMI,
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
Bas Mijling Ronald van der A AMFIC Final Meeting ● Beijing ● 23 October 2009 Results of WP 5 : Air Quality Forecasting.
1 Satellite data assimilation for air quality forecast 10/10/2006.
TEMIS user workshop, Frascati, 8-9 October 2007 Tropospheric Formaldehyde (CH 2 O) from Satellite Observations. Isabelle De Smedt 1, M. Van Roozendael.
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December 2002 Monitoring of near-real-time SCIAMACHY, MIPAS, and.
Ankie Piters Royal Netherlands Meteorological Institute Ministry of Infrastructure and Environment Measuring vertical profiles and tropospheric columns.
Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
SCIAMACHY long-term validation M. Weber, S. Mieruch, A. Rozanov, C. von Savigny, W. Chehade, R. Bauer, and H. Bovensmann Institut für Umweltphysik, Universität.
AMFIC final meeting LAP/Auth validation activities Dimitris Balis & MariLiza Koukouli Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
1 Traffic Restrictions Associated with the Sino-African Summit: Reductions of NO x Detected from Space Yuxuan Wang, Michael B. McElroy, K. Folkert Boersma.
Validation of SCIAMACHY total ozone: ESA/DLR V5(W) and IUP WFDOAS V2(W) M. Weber, S. Dikty, J. P.Burrows, M. Coldewey-Egbers (1), V. E. Fioletov (2), S.
Central EuropeUS East CoastJapan Global satellite observations of the column-averaged dry-air mixing ratio (mole fraction) of CO 2, denoted XCO 2, has.
Validation of OMI total ozone using ground-based Brewer observations ESA Atmospheric Science Conference, 8-12 May 2006, Frascati, Italy Dimitris Balis.
OMI ST meeting KNMI Validation of OMI total ozone using ground-based Brewer and Dobson observations D. Balis 1, E. Brinksma 2, M. Kroon 2,V.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
10-11 October 2006HYMN kick-off TM3/4/5 Modeling at KNMI HYMN Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
Eskes, TROPOMI workshop, Mar 2008 Air Quality Forecasting in Europe Henk Eskes European ensemble forecasts: GEMS and PROMOTE Air Quality forecasts for.
Update on TROPOMI instrument and status Pepijn Veefkind, Diego Loyola, Andreas Richter, Ilse Aben, Michel van Roozendael, Isabelle De Smedt, Richard Siddans,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, 23 October 2009.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Monitoring of sulphur dioxide emissions from satellite as part of GSE PROMOTE Jos van Geffen, Michel Van Roozendael, Isabelle De Smedt, Caroline Fayt (BIRA-IASB)
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Barcelona, June 2009.
Folkert Boersma, D.J. Jacob, R.J. Park, R.C. Hudman – Harvard University H.J. Eskes, J.P. Veefkind, R.J. van der A, P.F. Levelt, E.J. Brinksma – KNMI A.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
SADDU1/13 SCIAVALIG status report: Product website & Quality assessment status Annelise du Piesanie, Ankie Piters.
CAPACITY User Requirements by Albert P H Goede 7 April 2004, KNMI Objective of Work Package 1000 Definition of User Requirements for Operational Monitoring.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Concurrent measurements of tropospheric NO2 from OMI and SCIAMACHY
Johan de Haan Pepijn Veefkind
Henk Eskes, Jan Fokke Meirink, Ankie Piters
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
Sentinel 5 Precursor Ozone Column products
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Satellite data assimilation for air quality forecast
Monitoring and assimilation of SCIAMACHY data at ECMWF
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Henk Eskes, ERS-ENVISAT symposium 2004 Retrieval, validation and assimilation of SCIAMACHY ozone columns Henk Eskes, Ronald van der A, Ellen Brinksma, Pepijn Veefkind, Johan de Haan, Pieter Valks Royal Netherlands Meteorological Institute (KNMI) 1) Ozone column retrieval 2) Validation of SCIAMACHY ozone columns 3) Data assimilation and validation

Henk Eskes, ERS-ENVISAT symposium 2004 Ozone column retrieval: new DOAS algorithm Heritage: Based on the OMI operational ozone column algorithm OMI-DOAS - Pepijn Veefkind, J. De Haan Implementation for GOME TOGOMI - P. Valks, R. Van Oss Implementation for SCIAMACHY TOSOMI - H. Eskes and R. van der A ESA ITT - GOME total-ozone algorithm BIRA IFE - University Bremen KNMI

Henk Eskes, ERS-ENVISAT symposium 2004 Innovations compared to e.g. GOME Fast Delivery, GDP vs 3 New treatment of rotational Raman scattering (J. de Haan) Empirical air-mass factor approach TOMS v8 ozone profile data base FRESCO cloud cover and cloud top height Radiative transfer improvements T-dep O 3 cross section: ECMWF temperature profiles

Henk Eskes, ERS-ENVISAT symposium 2004 Normalized Incident Sunlight Ozone Absorption Single Rayleigh Scattering Cabannes not scrambled 96.2 % Raman scrambled 3.8 % Ozone Absorption Ozone Absorption Received by sensor Rotational Raman: impact on retrieval

Henk Eskes, ERS-ENVISAT symposium 2004 New approach to rotational Raman scattering Difference between old and new treatment of Raman

Henk Eskes, ERS-ENVISAT symposium 2004 Empirical air-mass factor

Henk Eskes, ERS-ENVISAT symposium 2004 DOAS fit example rms 0.5 %

Henk Eskes, ERS-ENVISAT symposium 2004 SCIAMACHY TOSOMI Example

Henk Eskes, ERS-ENVISAT symposium 2004 Validation: midlatitude example Brewer De Bilt (52.1 N, 5.18E) bias: -1.8% rms: 4.3% No obvious seasonal bias

Henk Eskes, ERS-ENVISAT symposium 2004 Validation: summary Av. Bias [%] RMS BiasnumberAll Dobson Brewer SAOZ DOAS other Polar Lat > Lat< Midlat Lat 30 to Lat –30 to (Sub)tropical Lat –30 to

Henk Eskes, ERS-ENVISAT symposium 2004 Validation: summary vs. latitude Main conclusions: Tosomi 1.5% lower than ground based RMS 4.9% increasing with ozone variability (representativity) No clear geographical location dependence No clear seasonal dependence

Henk Eskes, ERS-ENVISAT symposium 2004 Ozone data assimilation at KNMI TM3DAM assimilation code: Driven by 6h meteo from ECMWF (wind, temperature, pres): analyses and 10-day forecasts Same vertical levels as ECMWF (subset in lower troposphere) Second moments advection (Prather) Sub-optimal Kalman filter, detailed error covariance modelling Ozone chemistry parametrizations: Cariolle gas phase "Cold tracer" scheme for heterogeneous chemistry

Henk Eskes, ERS-ENVISAT symposium 2004 Assimilation: example

Henk Eskes, ERS-ENVISAT symposium 2004 Validation: RMS Tosomi retrieval - assimilation rms about 3% average total rms = retrieval + forecast + represent. DU

Henk Eskes, ERS-ENVISAT symposium 2004 Validation: RMS Tosomi retrieval - GOME-Togomi assimilation rms about 3% average total rms = retrieval + forecast + represent.

Henk Eskes, ERS-ENVISAT symposium 2004 Tropospheric Emission Monitoring Internet Service ESA-Data User Programme project Sciamachy ozone related products: Near-real time total ozone from Sciamachy, delivery to ECMWF for assimilation 9-day medium-range forecasts of ozone UV forecasts

Henk Eskes, ERS-ENVISAT symposium 2004 Summary / conclusions Tosomi: SCIAMACHY ozone column retrieval algorithm based on OMI-DOAS Validation with ground-based observations: No clear latitude dependence (or seasonal dependence) bias -1.5 % Validation with data assimilation: Important for the development of the retrieval implementation OmF: shows neutral lon-lat behaviour, rms 3% Data available on Near-real time ozone columns, analysis records and 9-day forecasts of ozone and UV index 2004 ozone hole

Henk Eskes, ERS-ENVISAT symposium 2004 Validation of Tosomi retrieval with assimilation

Henk Eskes, ERS-ENVISAT symposium 2004 Validation of Tosomi retrieval with assimilation Theoretical error due to inaccurate lookup-table discretisation

Henk Eskes, ERS-ENVISAT symposium 2004 Validation of Tosomi retrieval with assimilation Before … DU

Henk Eskes, ERS-ENVISAT symposium 2004

Ozone hole 2004

Henk Eskes, ERS-ENVISAT symposium 2004 Ozone hole 2004 EP TOMS SCIAMACHY

Henk Eskes, ERS-ENVISAT symposium 2004 Ozone hole 2004