MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,

Slides:



Advertisements
Similar presentations
Page 1 Tropospheric NO 2 workshop, KNMI, De Bilt NL, Sept 2007M. Van Roozendael Tropospheric NO 2 from space: retrieval issues and perspectives for.
Advertisements

Page 1 OMI Science Team Meeting, Helsinki, Finland, 24 – 27 June 2008M. Van Roozendael et al. On the usability of space nadir UV-visible observations for.
Hester Volten, Ellen Brinksma, Stijn Berkhout, Daan Swart, René van der Hoff, Hans Bergwerff, Pieternel Levelt, Gaia Pinardi, Michel Van Roozendael NO.
Task Group 3 AT2 workshop, 30 Sept – 1 Oct 2008 Task Group 3 Achievements and Prospects Ankie Piters, KNMI.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
Introduction to Measurement Techniques in Environmental Physics, A. Richter, Summer Term Introduction to Measurement Techniques in Environmental.
Irie et al., Multi-component retrievals for MAX-DOAS, 2 nd CINDI workshop, Brussels, March 10-11, 2010 Multi-component vertical profile retrievals for.
Deriving vertical profiles of free tropospheric trace gases from ground based measurements: Implications for oxidation of atmospheric mercury Sean Coburn.
MAXDOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement G. Pinardi, M. Van Roozendael, N. Abuhassan, C. Adams,
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Bas Mijling Ronald van der A AMFIC Final Meeting ● Beijing ● 23 October 2009 Results of WP 5 : Air Quality Forecasting.
WP4: African Emissions M. Van Roozendael, C. Fayt, C. Hermans, G. Pinardi, C. Gielen, F. Hendrick, I. De Smedt BIRA-IASB Prof. Pierre Nzohabonayo, Rachel.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
TEMIS user workshop, Frascati, 8-9 October 2007 Tropospheric Formaldehyde (CH 2 O) from Satellite Observations. Isabelle De Smedt 1, M. Van Roozendael.
Air Quality Forecasting Bas Mijling Ronald van der A AMFIC Annual Meeting ● Beijing ● October 2008.
MINI-DOAS Jochen Stutz Max Spolaor University of California Los Angeles.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
SO2 and HCHO data from satellite & MAXDOAS instrument in Beijing Jos van Geffen Michel Van Roozendael, Isabelle De Smedt BIRA-IASB 1st AMFIC progress meeting.
BrO Retrievals for UV-Visible Ground-Based Measurements Cristen Adams 1, Annemarie Fraser 1, Kimberly Strong 1, Robyn Schofield 2 1 Department of Physics,
SCIAMACHY satellite validation during the field campaigns CINDI and TRANSBROM Enno Peters, Folkard Wittrock, Andreas Richter, Mark Weber and John P. Burrows.
BIRA-IASB station report
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
AMFIC second progress meeting MariLiza Koukouli & Dimitris Balis Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
AMFIC final meeting LAP/Auth validation activities Dimitris Balis & MariLiza Koukouli Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Air Quality Forecasting in China using a regional model Bas Mijling Ronald van der A Henk Eskes Hennie Kelder.
Effect Assessment of Air Quality Ensuring Measures during Beijing Olympic Games from Satellite Observation Pucai Wang, Huan Yu, Zhaonan Cai, Xuemei Zong,
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
HONO retrievals in Beijing and Xianghe F. Hendrick 1, K. Clémer 1,*, C. Fayt 1, C. Hermans 1, Y. Huan 1,2, T. Vlemmix 1, P. Wang 2, and M. Van Roozendael.
MAX-DOAS observations and their application to validations of satellite and model data in Wuxi, China 1) Satellite group, Max Planck institute for Chemistry,
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
OMI validation workshop - 22 nd June 2006 Louisa. J. Kramer (1), Paul. S. Monks (2), Roland. J. Leigh (1) (1) Earth Observation Science, Space Research.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
WP 5 : Air Quality Forecasting Bas Mijling Ronald van der A Arjan Lampe AMFIC Progress Meeting ● Barcelona ● 24 June 2009.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
 4-azimuth MAX-DOAS measurements in Mainz  Characterisation of the information content using 3D RTM MAXDOAS horizontal (averaging) effects MPI for Chemistry.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Measurements of pollutants and their spatial distributions over the Los Angeles Basin Ross Cheung1,2, Olga Pikelnaya1,2, Catalina Tsai1, Jochen Stutz1,2,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, 23 October 2009.
S5P tropical tropospheric ozone product based on convective cloud differential method Klaus-Peter Heue, Pieter Valks, Diego Loyola, Deutsches Zentrum für.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Ozone PEATE 2/20/20161 OMPS LP Release 2 - Status Matt DeLand (for the PEATE team) SSAI 5 December 2013.
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Barcelona, June 2009.
TEMPO Validation Capabilities Pandora NO 2 Total and tropospheric columns of NO2 from direct sun measurements -> column along a narrow cone (0.5 o ), actual.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
First results of the aerosol profiling group IUP Heidelberg BIRA-IASB MPIC Mainz IUP Bremen JAMSTEC WSU KNMI NIWA Univ. Leicester PSI TNO RIVM KNMI.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Height-resolved.
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
MAX-DOAS observations of tropospheric aerosols and formaldehyde above China Tim Vlemmix Francois Hendrick Michel Van Roozendael Isabelle De Smedt Katrijn.
SADDU Meeting, March 2009, SRON, Utrecht1 Recent progress on nadir UV-Vis retrievals at BIRA M. Van Roozendael 1 C. Lerot 1, I. De Smedt 1, N. Theys.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Hitoshi Irie Center for Environmental Remote Sensing (CEReS)
DOAS workshop 2015, Brussels, July 2015
Julia Remmers1, Thomas Wagner1
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Diurnal Variation of Nitrogen Dioxide
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
MAXDOAS horizontal (averaging) effects
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009, AMFIC meeting, Barcelona

Overview  MAXDOAS instrument  MAXDOAS retrieval strategies  Comparisons with satellite and CHIMERE model (NO 2, HCHO,…)  Conclusions and perspectives

New 2-channels MAXDOAS system with direct-sun pointing capability developed at BIRA Instrument funded by Belspo as part of bilateral research agreement for DRAGON-AMFIC Aim: provide complementary measurements of AQ-related gases and contribute to satellite validation (Target data products: O 3, NO 2, BrO, HCHO, glyoxal, SO 2, aerosol, etc) Operation: in Beijing at IAP/CAS from June 2008 to April Longer term: permanent installation in background site North of Beijing (Xinglong) MAXDOAS instrument

UV channel VIS channel O3O3 SO 2 HCHO, HONO BrO O 4, NO 2 NO 2, glyoxal O3O3 O 4, NO 2 O4O4 O4O4 O2O2 H2OH2O MAXDOAS analysis DOAS analysis: O 3 (Huggins) SO 2 HCHOHONO BrONO 2 GlyoxalO 3 (Chappuis) O 4 (360 nm) O 4 (470 nm) O 4 (570 nm) O 4 (630 nm)

Multi axis pointing constant light path through the stratosphere long light path through the lower troposphere, especially for the low elevation angles Multi-Axis geometry: by collecting light at different elevations, from the horizon to the zenith, stratospheric and tropospheric contributions can be separated : Stratosphere Low Troposphere Assuming that the NO 2 layer is below the scattering altitude, a geometrical approximation can be used to obtain tropospheric vertical columns: Line of Sight MAXDOAS retrieval strategies 1 rst approach:  QA/QC: columns derived from 2 different elevations angles (15° and 30°) are eliminated if they differ by more than 30 %.  Tropospheric columns have been derived for NO 2, HCHO, CHOCHO and SO 2 Trop SC = SC off - SC zenith

Multi axis pointing constant light path through the stratosphere long light path through the lower troposphere, especially for the low elevation angles Multi-Axis geometry: by collecting light at different elevations, from the horizon to the zenith, stratospheric and tropospheric contributions can be separated : Stratosphere Low Troposphere Assuming that the NO 2 layer is below the scattering altitude, a geometrical approximation can be used to obtain tropospheric vertical columns: Line of Sight MAXDOAS retrieval strategies 1 rst approach:  QA/QC: columns derived from 2 different elevations angles (15° and 30°) are eliminated if they differ by more than 30 %.  Tropospheric columns have been derived for NO 2, HCHO, CHOCHO and SO 2

Using radiative transfer modeling and optimal estimation method (involving aerosols profile retrieval from O 4 DSCD) to invert tropospheric NO 2 profiles MAXDOAS retrieval strategies 2 nd approach: MAXDOAS retrieval algorithm

 AOD retrieved from 4 bands of O 4 (treated independently)  Correction by a factor 1/0.8 to correct the O 4 xs, so the measured O 4 DSCD  measured O 4 DSCD*0.8  MAXDOAS AOD compared with available CIMEL measurements (only two wavelengths) MAXDOAS retrieval strategies 2 nd approach: MAXDOAS retrieval algorithm First step: derivation of aerosol AODs from O 4 and comparison with CIMEL

Second step: derivation of NO 2 profiles and comparison of the tropospheric columns with the geometrical approximation MAXDOAS retrieval strategies 2 nd approach: MAXDOAS retrieval algorithm

Comparisons with satellites NO 2 : OMI and GOME-2 (TEMIS algorithm)

CHIMERE model:  Resolution 0.25°x0.25°  Emissions: adapted for China  Levels (8, until 500 hPa (5.5 km))  ECMWF data set (0.5°) Type of output:  One file per day  NO 2, HCHO, Glyoxal, SO 2 profiles (8 levels), for each cell, 1 output per hour Comparison with CHIMERE Work under-progress:  comparison with MAXDOAS at Beijing  «simulation» of the NO 2 field seen by OMI Use CHIMERE as transfer standard to link satellite and ground-based column measurements Bas Mijling presentation

Comparison with CHIMERE  CHIMERE cell: 0.25°x0.25° (which at the Beijing latitude is ~28x21km²) CHIMERE cells 50 and 100 Km Beijing

GOME-2 pixel: 40x80km² OMI pixel: 13x24km² Spatial and temporal variations (1)

GOME-2 pixel: 40x80km² OMI pixel: 13x24km² Spatial and temporal variations (2)

Depending on the relative position of the satellite closest pixel, a weighted average of several CHIMERE grid cells is performed in order to reproduce the spatial averaging performed by the satellite. Under-development!!

HCHO: (Glyoxal, SO 2 )  MAXDOAS vs CHIMERE ☺  SCIAMACHY and GOME-2  will be presented by I. De Smedt Other trace gases… day day

Summary and Perspectives  MAXDOAS has measured in Beijing from June 2008 to April 2009  future re-installation outside Beijing  2 retrieval strategies show good agreement  One wrt the other for tropospheric NO 2  With CIMEL for the aerosols (AOD)  Tropospheric NO 2 and HCHO time series are compared to satellites (CHOCHO, SO 2 also possible)  Comparisons with the CHIMERE model is under development  Idea: study the temporal and spatial variability and the effects of horizontal smoothing