Another Modular Focal Plane: Part 1 – Sub-modules Bruce C. Bigelow University of Michigan Department of Physics 5/17/04.

Slides:



Advertisements
Similar presentations
ZTF Mechanical Walkthrough Matthew Hoff ZTF Technical Meeting 1.
Advertisements

SCT End-Cap FDR1/11/01 C.J.Nelson 1 Inner Detector SCT End-Cap FDR Summary of Prototyping and FE Analysis C.J.Nelson Rutherford Appleton Laboratory, CLRC.
6-7 July 20051B. C. Bigelow - UM Physics Finite element analysis of DECam May 11 C1 corrector lens – gravity and thermal load cases Bruce C. Bigelow, Physics.
Professor Richard S. MullerMichael A. Helmbrecht MEMS for Adaptive Optics Michael A. Helmbrecht Professor R. S. Muller.
A vertical-flexure CCD module Bruce C. Bigelow University of Michigan Department of Physics 10/7/04.
Blue Sky Solar Roll Cage Design. Back Roll Cage Final Design.
Project #3: Design of a MEMS Vertical Actuator Jianwei Heng Alvin Tai ME128 Spring 2005.
DVA1 Project Gary Hovey and Gordon Lacy Herzberg Jamboree 23 October 2014 NRC-Herzberg Astronomy Technology Program - Penticton.
Ceramic Focal Plane Components For SNAP B. C
Preliminary ANSYS Results: CCD Fixture and Lens Frame Andrew Lambert.
Stability of Mechanical Systems S. Sharma and V. Ravindranath.
Applied Precision Design 1 of 8 Strictly Confidential Design Portfolio: Applied Precision Design, LLC Amir Torkaman Jamie Nam 155 Acalanes Dr Suite #23.
Cryostat Structural, Thermal, and Vacuum Systems 14 October 2008 Martin Nordby, Gary Guiffre, John Ku, John Hodgson.
SPP FIELDS V5 Antenna Mechanical Peer Review David Glaser, Paul Turin, Jeremy McCauley, John Bonnell, Dennis Seitz SSL UCB 7/17/13.
Space Frame Structures for SNAP Bruce C. Bigelow University of Michigan Department of Physics 11/04/04.
Eddington Kick-Off. Vienna, September 17th, 2001 T.Muñoz/C.Laviada (INTA) 1 EddiCam: The Eddington Photometric Camera Preliminary Design Layout.
Student Satellite Project University of Arizona Team Goals Design, Fabricate, and Analyze a Structure that will Support the Payload –Space Allocation of.
C osmic R Ay T elescope for the E ffects of R adiation Telescope Mechanical Design Albert Lin The Aerospace Corporation Mechanical Engineer (310)
ZTF Cryostat Finite Element Analysis Andrew Lambert ZTF Technical Meeting 1.
MCAO Adaptive Optics Module Mechanical Design Eric James.
W.O. Miller i T i VG 1 Example Barrel Structures- Disk Primary FEA of Disk Frame Supports FEA of Disk Frame Supports –Structure 2m long with two end plates.
Determinate Space Frame Telescope Structures for SNAP Bruce C. Bigelow University of Michigan Department of Physics 7/28/04.
Example: Bridge.
FNAL Meeting, July 2006 Basti, Bedeschi, Raffaelli, INFN-Pisa 1 ILC cryomodule mechanical work at INFN-Pisa  Ongoing work  Near term future  Manpower.
Standardized CCD and MCT detector mounting configurations B. C. Bigelow, UM Physics 2/2/05.
The Mechanical Design of the Second and third Antarctic Survey Telescope Wen Haikun.
Cavity support scheme options Thomas Jones 25/06/15.
Reproduction interdite © ALMA EUROPEAN CONSORTIUM Reproduction forbidden Design, Manufacture, Transport and Integration in Chile of ALMA Antennas Page.
1 3/24/05Bruce C. Bigelow -- UM Physics Hexapod Detector Mounts B. C. Bigelow, UM Physics 3/24/05.
LBNL CCD Packaging “Yale Mount” Mechanical Analysis Dan Cheng LBNL.
Applied Precision Design 1 of 8 Strictly Confidential HIGH TEMP ROTARY SPINDLE IN VACCUM MULTI-AXIS SHUTTER MECHANISM RELIABILITY CYCLING TEST-BED MECHANISM.
Technical Challenges and Concerns S. Sharma and R. Alforque, R. Beuman, C. Foerster, E. Haas, E. Hu, P. Montanez, P. Mortazavi, S. Pjerov, J. Skaritka,
Grid Thermal Distortion 16 September 2008 Martin Nordby, John Hodgson.
Sag of ZTF components Callahan 9/4/2014. Corrector Trim Plate analysis.
Cavity support scheme options Thomas Jones 25/06/15 to 06/07/15 1.
Spacecraft Interface/Handling Ring Robert Besuner 12 August 2004.
Opto-Mechanics for SNAP at UM
Physics requirement Radial envelope: 1265 mm to 1473 mm 12 wedges over 2  20 tungsten layers of 2.5 mm 10 tungsten layers of 5 mm Instrumented gap 1.25.
An alternative spectrograph mount Bruce C. Bigelow University of Michigan Department of Physics 5/14/04.
A Multi-Disciplinary Approach to Calculate Displacement Due to Random Vibration For A Space Based Focal Plane Anthony J. Davenport Senior Mechanical Engineer.
Cavity support scheme options Thomas Jones 1. Introduction Both cavities will be supported by the fundamental power coupler and a number of blade flexures.
Design and Development of the FSM (Fast steering Secondary Mirror)
Status report AHCAL Mechanics Karsten Gadow CALICE Collaboration Meeting KEK, Studies of AHCAL absorber structure stability.
Dish Verification Antenna – 1 Project NRC - Herzberg Gary Hovey 18 November 2013.
Jeff Bolognese p1 Super Nova/Acceleration Probe 16 November 2001 Structural Analysis Jeff Bolognese 16 November 2001.
IRMOS Diffraction Grating Integral Tab Design  Performance of an optical system is highly sensitive to the surface distortion of the optics in the system.
56 MHz SRF Cavity and Helium vessel Design
D. M. Lee, LANL 1 07/10/07 Forward Vertex Detector Overview Technical Design Overview Design status.
Cavity support scheme options Thomas Jones 25/06/15 1.
SNAP CCD packaging study Flex-fold Internal flexure frame Robin Lafever September 2003 CCD Aluminum Nitride Invar frame CRIC, Clocks Molybdenum frame CCD.
EMC BWE Proto18 - Orsay Meeting 1 PANDA EMC BWE Proto18 Mikel Catania Goikoetxea, Javier Navarro Medrano, David Rodríguez Piñeiro, Yue Ma, Frank.
C osmic R Ay T elescope for the E ffects of R adiation CDR v1 Telescope Mechanical Design Albert Lin The Aerospace Corporation Mechanical Engineer (310)
Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE.
Telescope - Mechanical
Stress and cool-down analysis of the cryomodule
Dead zone analysis of ECAL barrel modules under static and dynamic loads Marc Anduze, Thomas Pierre Emile – LLR CALICE Collaboration Meeting.
ob-fpc: Flexible printed circuits for the alice tracker
Dead zone analysis of ECAL barrel modules under static and dynamic loads for ILD Thomas PIERRE-EMILE, Marc ANDUZE– LLR.
By Arsalan Jamialahmadi
Matthew Smith (617) June 27, 2006 Mechanical Design, CRaTER Assembly and Electronics Assembly Critical Design Review Matthew.
Department of Physics, University of Michigan
SNAP NIR Detector Packaging Development: Universal SiC Package
Department of Physics, University of Michigan
Vertical-flexure CCD module: Thermal and Dynamic FEA
Another Modular Focal Plane: Part 2 – FP assembly
Space Frame Structures for SNAP: Another secondary structure…
Department of Physics, University of Michigan
THERMAL CONTROL SYSTEM
Review of the Modal Analysis of the MiniBooNE Horn MH1
Standardized CCD and MCT detector mounting configurations
Presentation transcript:

Another Modular Focal Plane: Part 1 – Sub-modules Bruce C. Bigelow University of Michigan Department of Physics 5/17/04

2 Focal Plane Sub-modules Motivations:  install/remove single detectors from “front” of FP  assemble detectors in modules of 3 x 3  simplify assembly, integration, and test  reduce part counts, simplify part design  simplify part fabrication  individual module thermal control (Vis vs. IR)  optimize materials for detector packages (CTE)  local, discrete control of focal plane surface height  minimize mechanical mass  minimize thermal time constants  minimize gravity deflections for ground testing  maximize resonant frequencies

3 Focal Plane Sub-modules Requirements:  final focal plane flatness: +/- 25 microns  support different optimal temperatures for Vis and IR  detector temperature stability +/- 1K  high stiffness – high first resonance

4 Focal Plane Sub-modules This talk:  sub-module designs  sub-module FEA

5 IR sub-module Rockwell H2RG package

6 IR sub-module Rockwell H2RG package with filter and frame

7 IR sub-module Rockwell H2RG package on moly MZT sub-plate

8 IR sub-module Rockwell H2RG 3 x 3 sub array

9 IR sub-module 3 x 3 sub array with flexure mounts

10 IR sub-module Sub-array with CRICs, flex circuits, connectors, local IR electronics (cold), sub-plate heater

11 IR sub-module Finished IR module with aperture mask

12 CCD sub-module Finished CCD module with aperture mask

13 Sub-module FEA FE Analyses:  Static analysis – gravity deflections  package mass modeled by doubling sub-plate density  moly packages and sub-plate, invar flexures  omit package cutouts, mounting holes, etc.  focal plane axis vertical and horizontal

14 Sub-module static FEA (meters) Sub-module, Gy, Y deflection = 1.1 microns

15 Sub-module static FEA (meters) Sub-module, Gy, Z deflection = +/- 0.3 microns

16 Sub-module static FEA (meters) Sub-module, Gz, max. Z deflection = 0.8 microns

17 Sub-module FEA FE Analyses:  Dynamic analysis - vibration modes and frequencies  package mass modeled by doubling sub-plate density  omit package cutouts, mounting holes, etc.  First resonance = 528 Hz for Invar/Invar case  First resonance = 630 Hz for Moly/Invar case

18 Sub-module dynamic FEA Moly sub-plate and Invar flexures – first mode Mode/Freq

19 Sub-module dynamic FEA Moly MZT sub-plate and flexures – third mode Mode/Freq

20 Sub-module thermal FEA  Thermal analysis – stress and distortion  omit package cutouts, mounting holes, etc.  omit package mass, stiffness  -160 K temperature shift  static, isothermal analysis  no effort yet to optimize flexure design  no effort yet to optimize stiffness of sub-plate

21 Sub-module thermal FEA Elements: Purple = Invar Red = Moly

22 Sub-module thermal FEA Purple = invar Red = moly Max stress at Invar/Moly joint (not realistic), 86.8 MPa (12,557 Psi), (Invar yield ~ 250 MPa) (Pascals)

23 Sub-module thermal FEA Purple = invar Red = moly Shrinkage of Invar vs. Moly in X direction, +/- 50 microns (meters)

24 Sub-module thermal FEA Purple = invar Red = moly Shrinkage of Invar vs. Moly in X direction Sub-plate displacement in Z direction – 15 microns (meters)

25 Sub-module thermal FEA Purple = invar Red = moly Shrinkage of Invar vs. Moly in X direction Sub-plate displacement in Z direction – 15 microns (meters) Distortion of mounting surface ~2 micron

26 FP sub-modules Conclusions:  sub-module designs for Vis and IR developed detector packages filters with mounts sub-plates sub-plate mounting flexures electrical connectors, junction boxes  FEA demonstrates stiffness, high resonant freq.  FEA demonstrates acceptable thermal performance