[Part 8] 1/26 Discrete Choice Modeling Nested Logit Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.

Slides:



Advertisements
Similar presentations
[Part 13] 1/30 Discrete Choice Modeling Hybrid Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Advertisements

Discrete Choice Modeling William Greene Stern School of Business IFS at UCL February 11-13, 2004
Discrete Choice Modeling William Greene Stern School of Business New York University.
3. Binary Choice – Inference. Hypothesis Testing in Binary Choice Models.
Discrete Choice Modeling William Greene Stern School of Business New York University.
12. Random Parameters Logit Models. Random Parameters Model Allow model parameters as well as constants to be random Allow multiple observations with.
[Part 1] 1/15 Discrete Choice Modeling Econometric Methodology Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Models William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University.
10. Multinomial Choice. A Microeconomics Platform Consumers Maximize Utility (!!!) Fundamental Choice Problem: Maximize U(x 1,x 2,…) subject to prices.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
[Part 15] 1/24 Discrete Choice Modeling Aggregate Share Data - BLP Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Models William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
[Part 9] 1/79 Discrete Choice Modeling Modeling Heterogeneity Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
[Part 4] 1/43 Discrete Choice Modeling Bivariate & Multivariate Probit Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Part 24: Stated Choice [1/117] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling
Discrete Choice Modeling William Greene Stern School of Business New York University.
14. Scaling and Heteroscedasticity. Using Degenerate Branches to Reveal Scaling Travel Fly Rail Air CarTrain Bus LIMB BRANCH TWIG DriveGrndPblc.
Microeconometric Modeling
1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New.
[Part 7] 1/96 Discrete Choice Modeling Multinomial Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/68: Topic 4.2 – Latent Class Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William Greene.
Discrete Choice Modeling William Greene Stern School of Business New York University.
11. Nested Logit Models. Extended Formulation of the MNL Groups of similar alternatives Compound Utility: U(Alt)=U(Alt|Branch)+U(branch) Behavioral implications.
[Part 15] 1/24 Discrete Choice Modeling Aggregate Share Data - BLP Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/122: Topic 3.3 – Discrete Choice; The Multinomial Logit Model Microeconometric Modeling William Greene Stern School of Business New York University New.
[Part 5] 1/43 Discrete Choice Modeling Ordered Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Microeconometric Modeling
William Greene Stern School of Business New York University
Microeconometric Modeling
William Greene Stern School of Business New York University
Discrete Choice Modeling
Discrete Choice Modeling
Discrete Choice Modeling
William Greene Stern School of Business New York University
Econometric Analysis of Panel Data
Discrete Choice Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Discrete Choice Modeling
Econometrics Chengyuan Yin School of Mathematics.
Microeconometric Modeling
Discrete Choice Modeling
Microeconometric Modeling
Econometric Analysis of Panel Data
William Greene Stern School of Business New York University
William Greene Stern School of Business New York University
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Econometric Analysis of Panel Data
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2019 William Greene Department of Economics Stern School.
William Greene Stern School of Business New York University
Empirical Methods for Microeconomic Applications
Presentation transcript:

[Part 8] 1/26 Discrete Choice Modeling Nested Logit Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction 1Summary 2Binary Choice 3Panel Data 4Bivariate Probit 5Ordered Choice 6Count Data 7Multinomial Choice 8Nested Logit 9Heterogeneity 10Latent Class 11Mixed Logit 12Stated Preference 13Hybrid Choice

[Part 8] 2/26 Discrete Choice Modeling Nested Logit Extended Formulation of the MNL Sets of similar alternatives Compound Utility: U(Alt)=U(Alt|Branch)+U(branch) Behavioral implications – Correlations within branches Travel PrivatePublic Air CarTrainBus LIMB BRANCH TWIG

[Part 8] 3/26 Discrete Choice Modeling Nested Logit Correlation Structure for a Two Level Model  Within a branch Identical variances (IIA (MNL) applies) Covariance (all same) = variance at higher level  Branches have different variances (scale factors)  Nested logit probabilities: Generalized Extreme Value Prob[Alt,Branch] = Prob(branch) * Prob(Alt|Branch)

[Part 8] 4/26 Discrete Choice Modeling Nested Logit Probabilities for a Nested Logit Model

[Part 8] 5/26 Discrete Choice Modeling Nested Logit Model Form RU1

[Part 8] 6/26 Discrete Choice Modeling Nested Logit Moving Scaling Down to the Twig Level

[Part 8] 7/26 Discrete Choice Modeling Nested Logit Higher Level Trees E.g., Location (Neighborhood) Housing Type (Rent, Buy, House, Apt) Housing (# Bedrooms)

[Part 8] 8/26 Discrete Choice Modeling Nested Logit Estimation Strategy for Nested Logit Models  Two step estimation (ca. 1980s) For each branch, just fit MNL  Loses efficiency – replicates coefficients For branch level, fit separate model, just including y and the inclusive values in the branch level utility function  Again loses efficiency  Full information ML (current) Fit the entire model at once, imposing all restrictions

[Part 8] 9/26 Discrete Choice Modeling Nested Logit MNL Baseline Discrete choice (multinomial logit) model Dependent variable Choice Log likelihood function Estimation based on N = 210, K = 10 R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj Constants only Chi-squared[ 7] = Prob [ chi squared > value ] = Response data are given as ind. choices Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] GC|.07578*** TTME| *** INVT| *** INVC| *** A_AIR| *** AIR_HIN1| A_TRAIN| *** TRA_HIN3| *** A_BUS| *** BUS_HIN4|

[Part 8] 10/26 Discrete Choice Modeling Nested Logit FIML Parameter Estimates FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function The model has 2 levels. Random Utility Form 1:IVparms = LMDAb|l Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC|.06579*** TTME| *** INVT| *** INVC| *** A_AIR| ** AIR_HIN1| A_TRAIN| *** TRA_HIN3| *** A_BUS| *** BUS_HIN4| |IV parameters, lambda(b|l),gamma(l) PRIVATE| *** PUBLIC| ***

[Part 8] 11/26 Discrete Choice Modeling Nested Logit Elasticities Decompose Additively

[Part 8] 12/26 Discrete Choice Modeling Nested Logit | Elasticity averaged over observations. | | Attribute is INVC in choice AIR | | Decomposition of Effect if Nest Total Effect| | Trunk Limb Branch Choice Mean St.Dev| | Branch=PRIVATE | | * Choice=AIR | | Choice=CAR | | Branch=PUBLIC | | Choice=TRAIN | | Choice=BUS | | Attribute is INVC in choice CAR | | Branch=PRIVATE | | Choice=AIR | | * Choice=CAR | | Branch=PUBLIC | | Choice=TRAIN | | Choice=BUS | | Attribute is INVC in choice TRAIN | | Branch=PRIVATE | | Choice=AIR | | Choice=CAR | | Branch=PUBLIC | | * Choice=TRAIN | | Choice=BUS | | * indicates direct Elasticity effect of the attribute. |

[Part 8] 13/26 Discrete Choice Modeling Nested Logit Testing vs. the MNL  Log likelihood for the NL model  Constrain IV parameters to equal 1 with ; IVSET(list of branches)=[1]  Use likelihood ratio test  For the example: LogL (NL) = LogL (MNL) = Chi-squared with 2 d.f. = 2( ( )) = The critical value is 5.99 (95%) The MNL (and a fortiori, IIA) is rejected

[Part 8] 14/26 Discrete Choice Modeling Nested Logit Degenerate Branches Travel FlyGround Air Car Train Bus BRANCH TWIG LIMB

[Part 8] 15/26 Discrete Choice Modeling Nested Logit NL Model with a Degenerate Branch FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC|.44230*** TTME| *** INVT| *** INVC| *** A_AIR| *** AIR_HIN1| A_TRAIN| *** TRA_HIN2| *** A_BUS| *** BUS_HIN3| |IV parameters, lambda(b|l),gamma(l) FLY|.86489*** GROUND|.24364***

[Part 8] 16/26 Discrete Choice Modeling Nested Logit Using Degenerate Branches to Reveal Scaling

[Part 8] 17/26 Discrete Choice Modeling Nested Logit Scaling in Transport Modes FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function The model has 2 levels. Nested Logit form:IVparms=Taub|l,r,Sl|r & Fr.No normalizations imposed a priori Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC|.09622** TTME| *** INVT| *** INVC| *** A_AIR| *** A_TRAIN| *** A_BUS| ** |IV parameters, tau(b|l,r),sigma(l|r),phi(r) FLY| ** RAIL|.92758*** LOCLMASS| *** DRIVE| (Fixed Parameter) NLOGIT ; Lhs=mode ; Rhs=gc,ttme,invt,invc,one ; Choices=air,train,bus,car ; Tree=Fly(Air), Rail(train), LoclMass(bus), Drive(Car) ; ivset:(drive)=[1]$

[Part 8] 18/26 Discrete Choice Modeling Nested Logit Simulation NLOGIT ; lhs=mode;rhs=gc,ttme,invt,invc ; rh2=one,hinc; choices=air,train,bus,car ; tree=Travel[Private(Air,Car),Public(Train,Bus)] ; ru1 ; simulation = * ; scenario:gc(car)=[*]1.5 |Simulations of Probability Model | |Model: FIML: Nested Multinomial Logit Model | |Number of individuals is the probability times the | |number of observations in the simulated sample. | |Column totals may be affected by rounding error. | |The model used was simulated with 210 observations.| Specification of scenario 1 is: Attribute Alternatives affected Change type Value GC CAR Scale base by value Simulated Probabilities (shares) for this scenario: |Choice | Base | Scenario | Scenario - Base | | |%Share Number |%Share Number |ChgShare ChgNumber| |AIR | | | % -37 | |CAR | | | % -47 | |TRAIN | | | % -37 | |BUS | | | % 121 | |Total | | |.000% 0 |

[Part 8] 19/26 Discrete Choice Modeling Nested Logit Uses the result that if U(i,j) is the lowest utility, -U(i,j) is the highest. Nested Logit Approach for Best/Worst

[Part 8] 20/26 Discrete Choice Modeling Nested Logit Nested Logit Approach.

[Part 8] 21/26 Discrete Choice Modeling Nested Logit Nested Logit Approach – Different Scaling for Worst 8 choices are two blocks of 4. Best in one brance, worst in the second branch

[Part 8] 22/26 Discrete Choice Modeling Nested Logit An Error Components Model

[Part 8] 23/26 Discrete Choice Modeling Nested Logit Error Components Logit Model Error Components (Random Effects) model Dependent variable MODE Log likelihood function Response data are given as ind. choices Replications for simulated probs. = 25 Halton sequences used for simulations ECM model with panel has 70 groups Fixed number of obsrvs./group= 3 Hessian is not PD. Using BHHH estimator Number of obs.= 210, skipped 0 obs Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Nonrandom parameters in utility functions GC|.07293*** TTME| *** INVT| *** INVC| *** A_AIR| *** A_TRAIN| *** A_BUS| *** |Standard deviations of latent random effects SigmaE01| SigmaE02|

[Part 8] 24/26 Discrete Choice Modeling Nested Logit The Multinomial Probit Model

[Part 8] 25/26 Discrete Choice Modeling Nested Logit Multinomial Probit Probabilities

[Part 8] 26/26 Discrete Choice Modeling Nested Logit The problem of just reporting coefficients Stata: AIR = “base alternative” Normalizes on CAR

[Part 8] 27/26 Discrete Choice Modeling Nested Logit | Multinomial Probit Model | | Dependent variable MODE | | Number of observations 210 || | Log likelihood function | Not comparable to MNL | Response data are given as ind. choice. | |Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Attributes in the Utility Functions (beta) GC | TTME | INVC | INVT | AASC | TASC | BASC | Std. Devs. of the Normal Distribution. s[AIR] | s[TRAIN]| s[BUS] | (Fixed Parameter) s[CAR] | (Fixed Parameter) Correlations in the Normal Distribution rAIR,TRA| rAIR,BUS| rTRA,BUS| rAIR,CAR| (Fixed Parameter) rTRA,CAR| (Fixed Parameter) rBUS,CAR| (Fixed Parameter) Multinomial Probit Model

[Part 8] 28/26 Discrete Choice Modeling Nested Logit Multinomial Probit Elasticities | Elasticity averaged over observations.| | Attribute is INVC in choice AIR | | Effects on probabilities of all choices in model: | | * = Direct Elasticity effect of the attribute. | | Mean St.Dev | | * Choice=AIR | | Choice=TRAIN | | Choice=BUS | | Choice=CAR | | Attribute is INVC in choice TRAIN | | Choice=AIR | | * Choice=TRAIN | | Choice=BUS | | Choice=CAR | | Attribute is INVC in choice BUS | | Choice=AIR | | Choice=TRAIN | | * Choice=BUS | | Choice=CAR | | Attribute is INVC in choice CAR | | Choice=AIR | | Choice=TRAIN | | Choice=BUS | | * Choice=CAR | | INVC in AIR | | Mean St.Dev | | * | | | | INVC in TRAIN | | | | * | | | | INVC in BUS | | | | * | | | | INVC in CAR | | | | * | Multinomial Logit

[Part 8] 29/26 Discrete Choice Modeling Nested Logit Not the Multinomial Probit Model MPROBIT This is identical to the multinomial logit – a trivial difference of scaling that disappears from the partial effects. (Use ASMProbit for a true multinomial probit model.)